首页> 外文期刊>Journal of the Optical Society of America, A. Optics, image science, and vision >Irradiance-variance behavior by numerical simulation for plane-wave and spherical-wave optical propagation through strong turbulence
【24h】

Irradiance-variance behavior by numerical simulation for plane-wave and spherical-wave optical propagation through strong turbulence

机译:通过数值模拟通过强湍流的平面波和球面波光传播的辐照度变化行为

获取原文
获取原文并翻译 | 示例
           

摘要

We have simulated optical propagation through atmospheric turbulence in which the spectrum near the inner scale follows that of Hill and Clifford [J. Opt. Soc. Am. 68, 892 (1978)] and the turbulence strength puts the propagation into the asymptotic strong-fluctuation regime. Analytic predictions for this regime have the form of power laws as a function of β_(0)~(2), the irradiance variance predicted by weak-fluctuation (Rytov) theory, and l_(0), the inner scale. The simulations indeed show power laws for both spherical-wave and plane-wave initial conditions, but the power-law indices are dramatically different from the analytic predictions. Let σ_(I)~(2)-1=α(β_(0)~(2)/β_(c)~(2))~(-b)(l_(0)/R_(f))~(c), where we take the reference value of β_(0)~(2) to be β_(c)~(2)=60.6, because this is the center of our simulation region. For zero inner scale (for which c=0), the analytic prediction is b=0.4 and a=0.17 (0.37) for a plane (spherical) wave. Our simulations for a plane wave give a=0.234±0.007 and b=0.50±0.07, and for a spherical wave they give a=0.58±0.01 and b=0.65±0.05. For finite inner scale the analytic prediction is b=1/6, c=7/18 and a=0.76 (2.07) for a plane (spherical) wave. We find that to a reasonable approximation the behavior with β_(0)~(2) and l_(0) indeed factorizes as predicted, and each part behaves like a power law. However, our simulations for a plane wave give a=0.57±0.03, b=0.33±0.03, and c=0.45±0.06. For spherical waves we find a=3.3±0.3, b=0.45±0.05, and c=0.8±0.1.
机译:我们已经模拟了通过大气湍流的光学传播,其中内部尺度附近的光谱遵循希尔和克利福德的光谱[J.选择。 Soc。上午。 68,892(1978)],湍流强度使传播进入渐近的强波动态。对这种状态的解析预测具有幂律的形式,即幂函数β_(0)〜(2)的函数(通过微涨落(Rytov)理论预测的辐照度方差)和l_(0)(内部尺度)。模拟的确显示了球面波和平面波初始条件的功率定律,但是功率定律指数与分析预测有很大不同。令σ_(I)〜(2)-1 =α(β_(0)〜(2)/β_(c)〜(2))〜(-b)(l_(0)/ R_(f))〜( c),我们将β_(0)〜(2)的参考值设为β_(c)〜(2)= 60.6,因为这是我们仿真区域的中心。对于零内部比例(对于c = 0),对于平面(球面)波,分析预测为b = 0.4,a = 0.17(0.37)。我们对平面波的模拟给出a = 0.234±0.007和b = 0.50±0.07,对于球形波,它们给出a = 0.58±0.01和b = 0.65±0.05。对于有限的内部比例,对于平面(球形)波,解析预测为b = 1/6,c = 7/18和a = 0.76(2.07)。我们发现,对于一个合理的近似值,β_(0)〜(2)和l_(0)的行为确实可以像预期的那样分解,并且每个部分的行为都像幂定律。但是,我们对平面波的仿真给出a = 0.57±0.03,b = 0.33±0.03和c = 0.45±0.06。对于球形波,我们发现a = 3.3±0.3,b = 0.45±0.05和c = 0.8±0.1。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号