首页> 外文期刊>Journal of the Optical Society of America, A. Optics, image science, and vision >Determining the phase and amplitude distortion of a wavefront using a plenoptic sensor
【24h】

Determining the phase and amplitude distortion of a wavefront using a plenoptic sensor

机译:使用全光传感器确定波前的相位和幅度失真

获取原文
获取原文并翻译 | 示例
           

摘要

We have designed a plenoptic sensor to retrieve phase and amplitude changes resulting from a laser beam's propagation through atmospheric turbulence. Compared with the commonly restricted domain of (-pi, pi) in phase reconstruction by interferometers, the reconstructed phase obtained by the plenoptic sensors can be continuous up to a multiple of 2 pi. When compared with conventional Shack -Hartmann sensors, ambiguities caused by interference or low intensity, such as branch points and branch cuts, are less likely to happen and can be adaptively avoided by our reconstruction algorithm. In the design of our plenoptic sensor, we modified the fundamental structure of a light field camera into a mini Keplerian telescope array by accurately cascading the back focal plane of its object lens with a microlens array's front focal plane and matching the numerical aperture of both components. Unlike light field cameras designed for incoherent imaging purposes, our plenoptic sensor operates on the complex amplitude of the incident beam and distributes it into a matrix of images that are simpler and less subject to interference than a global image of the beam. Then, with the proposed reconstruction algorithms, the plenoptic sensor is able to reconstruct the wavefront and a phase screen at an appropriate depth in the field that causes the equivalent distortion on the beam. The reconstructed results can be used to guide adaptive optics systems in directing beam propagation through atmospheric turbulence. In this paper, we will show the theoretical analysis and experimental results obtained with the plenoptic sensor and its reconstruction algorithms. (C) 2015 Optical Society of America
机译:我们设计了一种全光传感器来检索由于激光束通过大气湍流传播而引起的相位和幅度变化。与干涉仪在相位重建中通常受限制的(-pi,pi)域相比,全光传感器获得的重建相位可以连续达到2 pi的倍数。与传统的Shack-Hartmann传感器相比,由干扰或低强度引起的歧义(例如分支点和分支切口)不太可能发生,并且可以通过我们的重构算法自适应地避免。在我们的全光传感器设计中,我们通过将其物镜的后焦平面与微透镜阵列的前焦平面精确级联,并使两个组件的数值孔径匹配,将光场相机的基本结构修改为微型Keplerian望远镜阵列。 。与专为非相干成像目的而设计的光场相机不同,我们的全光传感器在入射光束的复杂振幅上进行操作,并将其分布到图像矩阵中,该图像矩阵比光束的整体图像更简单,更少受到干扰。然后,通过提出的重建算法,全光传感器能够在适当的深度重建波前和相位屏,从而在光束上引起等效失真。重建的结果可用于指导自适应光学系统引导光束通过大气湍流传播。在本文中,我们将展示全光传感器及其重构算法的理论分析和实验结果。 (C)2015年美国眼镜学会

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号