首页> 外文期刊>Cognitive Neurodynamics >Information processing in the CNS: a supramolecular chemistry?
【24h】

Information processing in the CNS: a supramolecular chemistry?

机译:CNS中的信息处理:超分子化学?

获取原文
获取原文并翻译 | 示例
       

摘要

How does central nervous system process information? Current theories are based on two tenets: (a) information is transmitted by action potentials, the language by which neurons communicate with each other-and (b) homogeneous neuronal assemblies of cortical circuits operate on these neuronal messages where the operations are characterized by the intrinsic connectivity among neuronal populations. In this view, the size and time course of any spike is stereotypic and the information is restricted to the temporal sequence of the spikes; namely, the "neural code". However, an increasing amount of novel data point towards an alternative hypothesis: (a) the role of neural code in information processing is overemphasized. Instead of simply passing messages, action potentials play a role in dynamic coordination at multiple spatial and temporal scales, establishing network interactions across several levels of a hierarchical modular architecture, modulating and regulating the propagation of neuronal messages. (b) Information is processed at all levels of neuronal infrastructure from macromolecules to population dynamics. For example, intra-neuronal (changes in protein conformation, concentration and synthesis) and extra-neuronal factors (extracellular proteolysis, substrate patterning, myelin plasticity, microbes, metabolic status) can have a profound effect on neuronal computations. This means molecular message passing may have cognitive connotations. This essay introduces the concept of "supramolecular chemistry", involving the storage of information at the molecular level and its retrieval, transfer and processing at the supramolecular level, through transitory non-covalent molecular processes that are self-organized, self-assembled and dynamic. Finally, we note that the cortex comprises extremely heterogeneous cells, with distinct regional variations, macromolecular assembly, receptor repertoire and intrinsic microcircuitry. This suggests that every neuron (or group of neurons) embodies different molecular information that hands an operational effect on neuronal computation.
机译:中枢神经系统如何处理信息?当前的理论基于两个原则:(a)信息是通过动作电位传递的,即神经元相互交流的语言;(b)皮质回路的同质神经元集合对这些神经元消息进行操作,其中这些操作的特征在于神经元种群之间的内在联系。在这种情况下,任何尖峰的大小和时间过程都是刻板印象,并且信息仅限于尖峰的时间顺序。即“神经密码”。但是,越来越多的新颖数据指向了另一种假设:(a)过分强调了神经代码在信息处理中的作用。动作电位不是简单地传递消息,而是在多个空间和时间尺度的动态协调中发挥作用,在分层模块化体系结构的多个级别上建立网络交互,调制和调节神经元消息的传播。 (b)从大分子到种群动态,在神经元基础设施的各个层面都处理信息。例如,神经内(蛋白质构象,浓度和合成的变化)和神经外因素(细胞外蛋白水解,底物模式,髓鞘可塑性,微生物,代谢状态)可以对神经元计算产生深远影响。这意味着分子消息传递可能具有认知含义。本文介绍了“超分子化学”的概念,涉及通过自组织,自组装和动态的瞬时非共价分子过程在分子水平存储信息,并在超分子水平对其进行检索,转移和处理。 。最后,我们注意到皮质包含极其异质的细胞,具有明显的区域差异,大分子组装,受体组成和固有的微电路。这表明每个神经元(或神经元组)都体现了不同的分子信息,这些信息对神经元计算产生了一定的作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号