首页> 外文期刊>Journal of the mechanical behavior of biomedical materials >Fatigue design of a mechanically biocompatible lattice for a proof-of-concept femoral stem
【24h】

Fatigue design of a mechanically biocompatible lattice for a proof-of-concept femoral stem

机译:概念验证股骨柄的机械生物相容性晶格的疲劳设计

获取原文
获取原文并翻译 | 示例
       

摘要

A methodology is proposed to design a spatially periodic microarchitectured material for a two-dimensional femoral implant under walking gait conditions. The material is composed of a graded lattice with controlled property distribution that minimizes concurrently bone resorption and interface failure. The periodic microstructure of the material is designed for fatigue fracture caused by cyclic loadings on the hip joint as a result of walking. The bulk material of the lattice is Ti6AL4V and its microstructure is assumed free of defects. The Soderberg diagram is used for the fatigue design under multiaxial loadings. Two cell topologies, square and Kagome, are chosen to obtain optimized property gradients for a two-dimensional implant. Asymptotic homogenization (AH) theory is used to address the multiscale mechanics of the implant as well as to capture the stress and strain distribution at both the macro and the microscale. The microstress distribution found with AH is also compared with that obtained from a detailed finite element analysis. For the maximum value of the von Mises stress, we observe a deviation of 18.6% in unit cells close to the implant boundary, where the AH assumption of spatial periodicity of the fluctuating fields ceases to hold.In the second part of the paper, the metrics of bone resorption and interface shear stress are used to benchmark the graded cellular implant with existing prostheses made of fully dense titanium implant. The results show that the amount of initial postoperative bone loss for square and Kagome lattice implants decreases, respectively, by 53.8% and 58%. In addition, the maximum shear interface failure at the distal end is significantly reduced by about 79%.A set of proof-of-concepts of planar implants have been fabricated via Electron Beam Melting (EBM) to demonstrate the manufacturability of Ti6AL4V into graded lattices with alternative cell size. Optical microscopy has been used to measure the morphological parameters of the cellular microstructure, including cell wall thickness and pore size, and compared them with the nominal values. No sign of fracture or incomplete cell walls was observed, an assessment that shows the satisfactory metallurgical bond of cell walls and the structural integrity of the implants.
机译:提出了一种在步态条件下设计二维股骨植入物的空间周期性微结构材料的方法。该材料由具有受控特性分布的渐变晶格组成,该特性使同时发生的骨吸收和界面破坏最小化。该材料的周期性微观结构设计用于疲劳断裂,该疲劳断裂是由于行走导致的髋关节循环载荷所引起的。晶格的主体材料是Ti6AL4V,并且假定其微观结构没有缺陷。 Soderberg图用于多轴载荷下的疲劳设计。选择两个单元拓扑,即正方形和Kagome,以获得二维植入物的优化特性梯度。渐近均匀化(AH)理论用于解决植入物的多尺度力学问题,以及捕获宏观和微观尺度上的应力和应变分布。还将AH发现的微应力分布与从详细的有限元分析中获得的分布进行比较。对于von Mises应力的最大值,我们观察到在靠近植入物边界的晶胞中存在18.6%的偏差,其中AH对脉动场的空间周期性的假设不再成立。在本文的第二部分中,骨吸收和界面剪切应力的度量标准用于对梯度细胞植入物和现有的由完全致密的钛植入物制成的假体进行基准测试。结果表明,方形和Kagome晶格植入物的初始术后骨损失量分别减少了53.8%和58%。此外,远端的最大剪切界面破坏显着降低了约79%。通过电子束熔化(EBM)制造了一组平面植入物的概念证明,以证明Ti6AL4V可制造成渐变晶格与其他单元格大小。光学显微镜已用于测量细胞微结构的形态学参数,包括细胞壁厚度和孔径,并将其与标称值进行比较。没有观察到破裂或细胞壁不完整的迹象,该评估显示出令人满意的细胞壁冶金结合和植入物的结构完整性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号