...
【24h】

The biomechanics of arterial elastin.

机译:动脉弹性蛋白的生物力学。

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Uniaxial mechanical experiments have shown that a neo-Hookean/Gaussian model is suitable to describe the mechanics of arterial elastin networks [Gundiah, N., Ratcliffe, M.B., Pruitt, L.A., 2007. Determination of strain energy function for arterial elastin: Experiments using histology and mechanical tests. J. Biomech. 40, 586-594]. Based on the three-dimensional elastin architecture in arteries, we have proposed an orthotropic material symmetry for arterial elastin consisting of two orthogonally oriented and symmetrically placed families of mechanically equivalent fibers. In this study, we use these results to describe the strain energy function for arterial elastin, with dependence on a reduced subclass of invariants, as W=W(I(1),I(4)). We use previously published equations for this dependence [Humphrey, J.D., Strumpf, R.K., Yin, F.C.P., 1990a. Determination of a constitutive relation for passive myocardium: I. A new functional form. J. Biomech. Eng. 112, 333-339], in combination with a theoretical guided Rivlin-Saunders framework [Rivlin, R.S., Saunders, D.W., 1951. Large elastic deformations of isotropic materials VII. Experiments on the deformation of rubber. Phil. Trans. R. Soc. A 243, 251-288] and biaxial mechanical experiments, to obtain the form of this dependence. Using mechanical equivalence of elastin in the circumferential and longitudinal directions, we add a term in I(6) to W that is similar to the form in I(4). We propose a semi-empirical model for arterial elastin given by W = c(0)(I(1) - 3) + c(1)(I(4) - 1)2 + c(2)(I(6) - 1)2, where c(0), c(1) and c(3) are unknown coefficients. We used the Levenberg-Marquardt algorithm to fit theoretically calculated and experimentally determined stresses from equibiaxial experiments on autoclaved elastin tissues and obtain c(0) = 73.96+/-22.51 kPa, c(1) = 1.18+/-1.79 kPa and c(2) = 0.8+/-1.26 kPa. Thus, the entropic contribution to the strain energy function, represented by c(0), is a dominant feature of elastin mechanics. Because there are no significant differences in the coefficients corresponding to invariants I(4) and I(6), we surmise that there is an equal distribution of fibers in the circumferential and axial directions.
机译:单轴力学实验表明,新霍克/高斯模型适用于描述动脉弹性蛋白网络的力学[Gundiah,N.,Ratcliffe,MB,Pruitt,LA,2007.弹性蛋白的应变能函数测定:组织学和力学测试。 J.生物机械。 40,586-594]。基于动脉中的三维弹性蛋白结构,我们提出了一种正交各向异性的对称性材料,用于动脉弹性蛋白,该材料由两个正交取向且对称放置的机械等效纤维族组成。在这项研究中,我们使用这些结果来描述动脉弹性蛋白的应变能函数,并依赖于不变的约简子集,如W = W(I(1),I(4))。我们使用以前发布的方程式来解决这种依赖性[Humphrey,J.D.,Strumpf,R.K.,Yin,F.C.P.,1990a。确定被动心肌的本构关系:I.一种新的功能形式。 J.生物机械。 。 112,333-339],结合理论上指导的Rivlin-Saunders框架[Rivlin,R.S.,Saunders,D.W.,1951。各向同性材料的大弹性变形VII。橡胶变形实验。菲尔反式R. Soc。 243,251-288]和双轴力学实验,以获得这种依赖性的形式。使用弹性蛋白在周向和纵向的机械等效性,我们在I(6)中向W添加了一个术语,类似于I(4)中的形式。我们提出了W = c(0)(I(1)-3)+ c(1)(I(4)-1)2 + c(2)(I(6)给出的动脉弹性蛋白的半经验模型-1)2,其中c(0),c(1)和c(3)是未知系数。我们使用Levenberg-Marquardt算法拟合高压灭菌弹性蛋白组织的等双轴实验的理论计算和实验确定的应力,并获得c(0)= 73.96 +/- 22.51 kPa,c(1)= 1.18 +/- 1.79 kPa和c( 2)= 0.8 +/- 1.26 kPa。因此,由c(0)表示的熵对应变能函数的贡献是弹性蛋白力学的主要特征。因为对应于不变式I(4)和I(6)的系数没有显着差异,所以我们推测纤维在圆周方向和轴向方向上分布均匀。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号