首页> 外文期刊>Journal of the European Ceramic Society >Alumina/cerium oxide nano-composite electrolyte for solid oxide fuel cell applications
【24h】

Alumina/cerium oxide nano-composite electrolyte for solid oxide fuel cell applications

机译:用于固体氧化物燃料电池的氧化铝/氧化铈纳米复合电解质

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Gadolinium-doped ceria has demonstrated a high-ionic conductivity at moderate temperatures and is a potential candidate as electrolyte in solid oxide fuel cell (SOFC) devices. However, Ce ions can undergo a valency change from +IV to +III under reducing conditions. That valency change then leads to electronic (polaron) conduction and thus, degrades the ionic conduction. It has been demonstrated that the incorporation of electrically insulating particles will reduce the electronic conduction by an 'electron-trapping' mechanism (ideally) without affecting the ionic conductivity. This design is principally similar to the grain boundary design in zinc-oxide varistors. In order to make this design effective, the insulating (electron trapping) particles have to be spaced close to each other. The spacing between 50 and 100 nm is assumed to be necessary for optimum performance. In order to not overload the entire composition with insulating particles (and thus reducing the ionic conductivity substantially due to volumetric dilution) the insulating grains have to be small (nanometer sized) and uniformly distributed throughout the matrix (cerium oxide). Moreover, the insulating grains should not dissolve or otherwise alter the cerium oxide matrix. The present study now focuses on the precipitation of nanometer-sized alumina particles and coating these 'seed' particles with a 50 nm layer of gadolinium-doped cerium oxide. Small sizes for the alumina particles will prevent the overall composition from being overloaded with nonconducting particles and the coating process will enhance a very uniform distribution of the alumina particles in the cerium oxide matrix. Afterwards, the powders were calcined, compacted and (microwave) sintered. Characterization by SEM, TEM, XRD, density, and conductivity measurements are presented to evaluate properties of the proposed nano-composite electrolyte.
机译:moderate掺杂的二氧化铈在中等温度下表现出高离子电导率,是固体氧化物燃料电池(SOFC)装置中电解质的潜在候选者。但是,在还原条件下,Ce离子的价态可能会从+ IV变为+ III。然后,该化合价变化导致电子(极化子)传导,从而降低离子传导。已经证明,电绝缘颗粒的掺入将通过“电子俘获”机制(理想地)减少电子传导,而不影响离子传导性。这种设计原则上类似于氧化锌压敏电阻的晶界设计。为了使该设计有效,必须将绝缘(电子捕获)粒子彼此靠近。假定50到100 nm之间的间隔对于最佳性能是必需的。为了不使整个组合物充满绝缘颗粒(并因此基本上由于体积稀释而降低离子电导率),绝缘颗粒必须小(纳米级)并且均匀地分布在整个基质(氧化铈)中。而且,绝缘颗粒不应溶解或以其他方式改变二氧化铈基体。现在,本研究着重于纳米级氧化铝颗粒的沉淀,并在这些“种子”颗粒上覆盖一层50纳米的掺氧化铈。氧化铝颗粒的小尺寸将防止整个组合物被非导电颗粒超载,并且涂覆过程将增强氧化铝颗粒在氧化铈基质中的非常均匀的分布。之后,将粉末煅烧,压实并(微波)烧结。提出了通过SEM,TEM,XRD,密度和电导率测量来表征所提出的纳米复合电解质的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号