【24h】

The role of big metal clusters in nanoscience

机译:大金属簇在纳米科学中的作用

获取原文
获取原文并翻译 | 示例
       

摘要

The miniaturisation of a metal particle to the nanosize regime produces quantum size behavior, i.e. the quasi-delocalized metallic electrons begin to form discrete energy levels, This transition from bulk to molecule is frequently observed for ligand-protected clusters in the size range 1-4 nm, Tunneling spectroscopic (STS) experiments on single clusters not only prove the size dependence of the Coulomb gap, but also the temperature dependence. As the electrostatic energy e(2)/2C must be large compared with the thermal energy k(g)T of the electron to induce Coulomb steps, very low temperatures are necessary to observe this event on larger particles. A 17 nm Pd cluster behaves like a piece of metal at room temperature, but shows a Coulomb barrier at 4.2 K. On the contrary, a ligand-stabilized 1.4 nm Au cluster shows a Coulomb step at room temperature (small C), but a series of Coulomb steps (SET processes) at 90 K. The practical use of clusters in nanoelectronics is coupled to the ability to organize them three-, two- or one-dimensionally. A quasi 3-D organization of clusters can be reached by linking them with spacer molecules, chemically fixed to the cluster surfaces. A direct relation between spacer length and activation energy for electronic inter-cluster tunneling processes is observed. Two-dimensional arrangements of different kinds of clusters have been reached by self-assembly processes on chemically modified surfaces or by using Langmuir-Blodgett (LB) films transferred onto a substrate, A deficiency of both methods is the lack of long-range order. First attempts to generate 1-D chains show good promise if nanopores in alumina membranes are used as tubes to be filled by the clusters. Electrophoretic filling has turned out to be the better method to introduce clusters compared with vacuum filling. [References: 22]
机译:金属微粒的微细化为纳米尺寸会产生量子尺寸行为,即准离域的金属电子开始形成离散的能级。对于大小范围为1-4的配体保护的团簇,经常观察到从本体到分子的跃迁在单簇上的隧道光谱(STS)实验中,不仅证明了库仑间隙的大小依赖性,而且还证明了温度依赖性。由于静电能e(2)/ 2C必须大于电子的热能k(g)T才能诱发库仑阶跃,因此必须有非常低的温度才能观察到较大粒子上的该事件。 17 nm Pd团簇在室温下的行为就像一块金属,但在4.2 K时显示库仑势垒。相反,配体稳定的1.4 nm Au团簇在室温下(小C)显示库仑台阶,但是在90 K上进行一系列库仑步骤(SET过程)。纳米电子团簇的实际使用与将它们三维,二维或一维组织的能力结合在一起。通过将簇与化学固定在簇表面上的间隔分子连接起来,可以实现簇的准3D组织。观察到间隔物长度和电子簇间隧穿过程的活化能之间的直接关系。通过化学修饰的表面上的自组装过程或通过使用转移到基质上的Langmuir-Blodgett(LB)薄膜,已经实现了不同种类簇的二维排列,这两种方法的不足之处在于缺乏长程有序性。如果将氧化铝膜中的纳米孔用作簇填充管,则首次尝试生成一维链显示出良好的前景。与真空填充相比,电泳填充已成为引入簇的更好方法。 [参考:22]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号