...
首页> 外文期刊>Journal of the Atmospheric Sciences >Growth of cloud droplets by turbulent collision-coalescence
【24h】

Growth of cloud droplets by turbulent collision-coalescence

机译:湍流碰撞凝聚导致云滴的生长

获取原文
获取原文并翻译 | 示例

摘要

An open question in cloud physics is how rain forms in warm cumulus as rapidly as it is sometimes observed. In particular, the growth of cloud droplets across the size gap from 10 to 50 mu m in radius has not been fully explained. In this paper, the authors investigate the growth of cloud droplets by collision coalescence, taking into account both the gravitational mechanism and several enhancements of the collision-coalescence rate due to air turbulence. The kinetic collection equation (KCE) is solved with an accurate bin integral method and a newly developed parameterization of turbulent collection kernel derived from direct numerical simulation of droplet-laden turbulent flows. Three other formulations of the turbulent collection kernel are also considered so as to assess the dependence of the rain initiation time on the nature of the collection kernel. The results are compared to the base case using the Hall hydrodynamical gravitational collection kernel. Under liquid water content and eddy dissipation rate values typical of small cumulus clouds, it is found that air turbulence has a significant impact on the collection kernel and thus on the time required to form drizzle drops. With the most realistic turbulent kernel, the air turbulence can shorten the time for the formation of drizzle drops by about 40% relative to the base case, applying measures based on either the radar reflectivity or the mass-weighted drop size. A methodology is also developed to unambiguously identify the three phases of droplet growth, namely, the autoconversion phase, the accretion phase, and the larger hydrometeor self-collection phase. The important observation is that even a moderate enhancement of collection kernel by turbulence can have a significant impact on the autoconversion phase of the growth.
机译:云物理学中的一个悬而未决的问题是,雨水如何在温暖的积云中形成,就像有时观察到的一样快。尤其是,尚未完全解释云滴在半径为10到50微米的尺寸间隙中的生长。在本文中,作者研究了碰撞聚结产生的云滴,同时考虑了重力机制和空气湍流引起的碰撞聚结速率的一些提高。动力学收集方程(KCE)通过精确的箱积分方法和新开发的湍流收集核参数化方法求解,该参数化是从含液滴的湍流的直接数值模拟中得出的。还考虑了湍流收集内核的其他三个公式,以便评估降雨开始时间对收集内核的性质的依赖性。使用霍尔流体动力学重力收集核将结果与基本情况进行比较。在小积云典型的液态水含量和涡流消散率值的情况下,发现湍流对收集核有显着影响,从而对形成毛毛雨滴所需的时间也有显着影响。对于最逼真的湍流核,相对于基本情况,空气湍流可以根据雷达反射率或质量加权的墨滴大小将形成毛滴的时间缩短约40%。还开发了一种方法来明确识别液滴生长的三个阶段,即自动转换阶段,吸积阶段和较大的水凝物自收集阶段。重要的观察结果是,即使湍流适度地增强了收集核,也会对生长的自动转化阶段产生重大影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号