...
首页> 外文期刊>Journal of the Atmospheric Sciences >Investigation of Upstream Boundary Layer Influence on Mountain Wave Breaking and Lee Wave Rotors Using a Large-Eddy Simulation
【24h】

Investigation of Upstream Boundary Layer Influence on Mountain Wave Breaking and Lee Wave Rotors Using a Large-Eddy Simulation

机译:大涡模拟研究上游边界层对山浪和李波旋流器的影响

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Interactions between a turbulent boundary layer and nonlinear mountain waves are explored using a large-eddy simulation model. Simulations of a self-induced critical layer, which develop a stagnation layer and a strong leeside surface jet, are considered. Over time, wave breaking in the stagnation region forces strong turbulence that influences the formation and structure of downstream leeside rotors. Shear production is an important source of turbulence in the stagnation zone and along the interface between the stagnation zone and surface jet, as well as along the rotor edges. Buoyancy perturbations act as a source of turbulence in the stagnation zone but are shown to inhibit turbulence generation on the edges of the stagnation zone. Surface heating is shown to have a strong influence on the strength of downslope winds and the formation of leeside rotors. In cases with no heating, a series of rotor circulations develops, capped by a region of increased winds. Weak heating disrupts this system and limits rotor formation at the base of the downslope jet. Strong heating has a much larger impact through a deepening of the upstream boundary layer and an overall decrease in the downslope winds. Rotors in this case are nonexistent. In contrast to the cases with surface warming, negative surface fluxes generate stronger downslope winds and intensified rotors due to turbulent interactions with an elevated stratified jet capping the rotors. Overall, the results suggest that for nonlinear wave systems over mountains higher than the boundary layer, strong downslope winds and rotors are favored in late afternoon and evening when surface cooling enhances the stability of the low-level air.
机译:利用大涡模拟模型研究了湍流边界层和非线性山波之间的相互作用。考虑了自诱导的临界层的模拟,该临界层形成了停滞层和强大的背侧表面射流。随着时间的流逝,停滞区域中的波浪破裂会导致强烈的湍流,从而影响下游背风侧转子的形成和结构。剪切产生是停滞区中以及沿着停滞区与表面射流之间的界面以及沿着转子边缘的湍流的重要来源。浮力扰动是停滞区湍流的源头,但显示出它可以抑制停滞区边缘的湍流产生。事实表明,表面加热对下坡风的强度和下风侧转子的形成有很大的影响。在不加热的情况下,会形成一系列转子循环,并被风量增加的区域所覆盖。弱加热会破坏该系统,并限制下坡射流底部的转子形成。由于上游边界层的加深和下坡风的总体下降,强烈的加热将产生更大的影响。在这种情况下不存在转子。与表面变暖的情况相比,负表面通量会产生较强的下坡风,并且由于湍流与高水平分层射流覆盖了转子之间的相互作用而产生了更强的下坡风和增强的转子。总体而言,结果表明,对于高于边界层的高山上的非线性波浪系统,在午后和傍晚,当表面冷却增强低空空气的稳定性时,强烈推荐使用强下坡风和转子。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号