...
首页> 外文期刊>Journal of the Atmospheric Sciences >Computational Cost and Accuracy in Calculating Three-Dimensional Radiative Transfer: Results for New Implementations of Monte Carlo and SHDOM
【24h】

Computational Cost and Accuracy in Calculating Three-Dimensional Radiative Transfer: Results for New Implementations of Monte Carlo and SHDOM

机译:计算三维辐射传递的计算成本和精度:蒙特卡洛和SHDOM新实现的结果

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

This paper examines the tradeoffs between computational cost and accuracy for two new state-of-the-art codes for computing three-dimensional radiative transfer: a community Monte Carlo model and a parallel implementation of the Spherical Harmonics Discrete Ordinate Method (SHDOM). Both codes are described and algorithmic choices are elaborated. Two prototype problems are considered: a domain filled with stratocumulus clouds and another containing scattered shallow cumulus, absorbing aerosols, and molecular scatterers. Calculations are performed for a range of resolutions and the relationships between accuracy and computational cost, measured by memory use and time to solution, are compared. Monte Carlo accuracy depends primarily on the number of trajectories used in the integration. Monte Carlo estimates of intensity are computationally expensive and may be subject to large sampling noise from highly peaked phase functions. This noise can be decreased using a range of variance reduction techniques, but these techniques can compromise the excellent agreement between the true error and estimates obtained from unbiased calculations. SHDOM accuracy is controlled by both spatial and angular resolution; different output fields are sensitive to different aspects of this resolution, so the optimum accuracy parameters depend on which quantities are desired as well as on the characteristics of the problem being solved. The accuracy of SHDOM must be assessed through convergence tests and all results from unconverged solutions may be biased. SHDOM is more efficient (i.e., has lower error for a given computational cost) than Monte Carlo when computing pixel-by-pixel upwelling fluxes in the cumulus scene, whereas Monte Carlo is more efficient in computing flux divergence and downwelling flux in the stratocumulus scene, especially at higher accuracies. The two models are comparable for downwelling flux and flux divergence in cumulus and upwelling flux in stratocumulus. SHDOM is substantially more efficient when computing pixel-by-pixel intensity in multiple directions; the models are comparable when computing domain-average intensities. In some cases memory use, rather than computation time, may limit the resolution of SHDOM calculations.
机译:本文研究了用于计算三维辐射传递的两种新的最新代码:社区蒙特卡洛模型和球形谐波离散标准方法(SHDOM)的并行实现,在计算成本和精度之间进行了权衡。描述了两个代码,并详细说明了算法选择。考虑了两个原型问题:一个充满层状积云的区域,另一个包含散布的浅积云,吸收气溶胶和分子散射的区域。针对一系列分辨率执行计算,并比较精度和计算成本之间的关系(通过内存使用和解决时间来衡量)。蒙特卡洛精度主要取决于积分中使用的轨迹数。强度的蒙特卡洛估计在计算上很昂贵,并且可能会受到来自高度峰值相位函数的大量采样噪声的影响。可以使用多种方差减少技术来降低这种噪声,但是这些技术可能会损害真实误差与从无偏计算中获得的估计值之间的出色一致性。 SHDOM的精度受空间和角度分辨率的控制;不同的输出场对该分辨率的不同方面敏感,因此最佳精度参数取决于所需的数量以及要解决的问题的特征。 SHDOM的准确性必须通过收敛测试进行评估,并且未收敛解决方案的所有结果都可能存在偏差。当计算积云场景中的逐像素上升流通量时,SHDOM比蒙特卡洛效率更高(即,对于给定的计算成本,误差较小),而蒙特卡洛在平积云场景中计算通量发散和下降通量时效率更高,尤其是在精度更高的情况下。这两种模型在下丘流中的向下流通量和通量发散以及在平流层中的上升流通量方面具有可比性。当在多个方向上计算逐像素强度时,SHDOM的效率大大提高。在计算域平均强度时,这些模型具有可比性。在某些情况下,内存使用而不是计算时间可能会限制SHDOM计算的分辨率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号