首页> 外文期刊>Journal of the Atmospheric Sciences >PRINCIPAL INTERACTION PATTERNS IN BAROCLINIC WAVE LIFE CYCLES
【24h】

PRINCIPAL INTERACTION PATTERNS IN BAROCLINIC WAVE LIFE CYCLES

机译:斜波生命周期中的主要相互作用模式

获取原文
获取原文并翻译 | 示例
       

摘要

A principal interaction pattern (PIP) analysis aims at finding a limited number of structures in seemingly very complicated physical scenarios that are time independent up to their amplitudes and phases. These vary according to nonlinear equations determining the interaction between the different structures. By minimizing a suitably chosen error function, calculated by comparing a PIP model with observed or synthetic datasets, both the structures and their interaction coefficients are determined simultaneously. This might therefore be a useful tool for identifying basic structures and processes underlying baroclinic wave life cycles. As a first step in this direction, an accordingly devised PIP model has been applied to a synthetic dataset obtained by numerically integrating the tendency equations of a very simple spherical and quasigeostrophic two-layer model incorporating surface drag and thermal damping. For fairly typical dissipative parameters, a PIP analysis identifies three basic structures that give a good description of the complete dynamics. The shape of these patterns and their interaction coefficients seem to be controlled by the diabatic parameters of the two-layer model. The initial conditions of an examined time series have virtually no influence. The role of the three PIPs in the baroclinic life cycle is discussed. An analysis of their interplay with each other and the zonal wind indicates that dissipation and forcing of the eddies themselves is an important factor in the maintenance of multiple baroclinic wave life cycles. Comparative analyses of cases with stronger and weaker dissipation indicate that the number of dynamically relevant patterns decreases with increasing dissipation, so that PIPs appear to be a valuable tool for the analysis of sufficiently dissipative systems. [References: 28]
机译:主要交互作用模式(PIP)分析旨在在看似非常复杂的物理场景中找到数量有限的结构,这些结构在时间上不依赖于振幅和相位。这些根据确定不同结构之间相互作用的非线性方程而变化。通过最小化通过将PIP模型与观察到的或合成的数据集进行比较而计算出的适当选择的误差函数,可以同时确定结构及其相互作用系数。因此,这可能是用于识别斜压波生命周期基础的基本结构和过程的有用工具。作为朝这个方向迈出的第一步,已将相应设计的PIP模型应用于通过对包括表面阻力和热阻尼的非常简单的球形和准地层两层模型的趋势方程进行数值积分而获得的合成数据集。对于相当典型的耗散参数,PIP分析确定了三个基本结构,可以很好地描述整个动力学。这些图案的形状及其相互作用系数似乎受两层模型的绝热参数控制。检查的时间序列的初始条件几乎没有影响。讨论了三个PIP在斜压生命周期中的作用。对它们彼此之间的相互作用和纬向风的分析表明,涡流本身的耗散和强迫是维持多个斜斜波生命周期的重要因素。对耗散强弱的案例进行的比较分析表明,动态相关模式的数量随耗散增大而减少,因此PIP似乎是分析足够耗散系统的有价值的工具。 [参考:28]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号