首页> 外文期刊>Journal of the Atmospheric Sciences >Impacts of Updraft Size and Dimensionality on the Perturbation Pressure and Vertical Velocity in Cumulus Convection. Part II: Comparison of Theoretical and Numerical Solutions and Fully Dynamical Simulations
【24h】

Impacts of Updraft Size and Dimensionality on the Perturbation Pressure and Vertical Velocity in Cumulus Convection. Part II: Comparison of Theoretical and Numerical Solutions and Fully Dynamical Simulations

机译:对流的大小和尺寸对积云对流中摄动压力和垂直速度的影响。第二部分:理论和数值解以及完全动力学仿真的比较

获取原文
获取原文并翻译 | 示例
       

摘要

This paper compares simple theoretical expressions relating vertical velocity, perturbation pressure, updraft size, and dimensionality for cumulus convection, derived in Part I, with numerical solutions of the anelastic buoyant perturbation pressure Poisson equation and vertical velocity w. A range of thermal buoyancy profiles representing shallow to deep moist convection are tested for both two-dimensional (2D) and three-dimensional (3D) updrafts. The theoretical expressions give similar results for w and perturbation pressure difference from updraft top to base Delta p compared to the numerical solutions over a wide range of updraft radius R. The theoretical expressions are also consistent with 2D and 3D fully dynamical updraft simulations initiated by warm bubbles of varying width. Implications for nonhydrostatic modeling in the "gray zone," with a horizontal grid spacing Delta x of O(1-10) km where convection is generally underresolved, are discussed. The theoretical and numerical solutions give a scaling of updraft velocity with R (similar to Delta x) consistent with fully dynamical 2D and 3D simulations in the gray zone, with a rapid decrease of maximum w at relatively small R and a slower decrease at large R. These results suggest that an incorrect representation of perturbation pressure may be an important contributor to biases in convective strength at these resolutions. The theoretical solutions also provide a concise physical interpretation of the "virtual mass" coefficient in convection parameterizations and can be easily incorporated into these schemes to provide a consistent scaling of perturbation pressure effects with R, updraft height, and the buoyancy profile.
机译:本文比较了第一部分中有关竖向速度,摄动压力,上升气流大小和积云对流尺寸的简单理论表达式,以及非弹性浮力摄动压力泊松方程和竖向速度w的数值解。对二维(2D)和三维(3D)上升气流都测试了代表浅湿深对流的一系列热浮力曲线。与在较大的上升气流半径R范围内的数值解相比,从上升气流顶部到基础Delta p的w和摄动压力差的理论表达式给出了相似的结果。该理论表达式也与由热启动的2D和3D全动态上升气流模拟相一致。宽度各异的气泡。讨论了在“灰色地带”中非静水模型的含义,其中水平网格间距Delta x为O(1-10)km,对流通常未得到充分解决。理论和数值解给出了与灰色区域中的全动态2D和3D模拟一致的R的上升气流速度缩放(类似于Delta x),在相对较小的R处最大w迅速减小,在较大R处减小w较慢。这些结果表明,在这些分辨率下,对摄动压力的错误表示可能是对流强度偏差的重要因素。理论解决方案还提供对流参数化中“虚拟质量”系数的简明物理解释,并且可以轻松地并入这些方案中,以提供扰动压力效应与R,上升气流高度和浮力曲线的一致缩放。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号