首页> 外文期刊>Journal of Sound and Vibration >Mesh-free least-squares-based finite difference method for large-amplitude free vibration analysis of arbitrarily shaped thin plates
【24h】

Mesh-free least-squares-based finite difference method for large-amplitude free vibration analysis of arbitrarily shaped thin plates

机译:基于无网格最小二乘的有限差分法求解任意形状薄板大振幅自由振动

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

A mesh-free least-squares-based finite difference (LSFD) method is applied for solving large-amplitude free vibration problem of arbitrarily shaped thin plates. In this approximate numerical method, the spatial derivatives of a function at a point are expressed as weighted sums of the function values of a group of supporting points. This method can be used to solve strong form of partial differential equations (PDEs), and it is especially useful in solving problems with complex domain geometries due to its mesh-free and local approximation characteristics. In this study, the displacement components of thin plates are constructed from the product of a spatial function and a periodic temporal function. Consequently, the nonlinear PDE is reduced to all ordinary differential equation (ODE) in terms of the temporal function. The accuracy, simplicity and efficiency of this mesh-free method are demonstrated for plates with simple as well as complex shapes. The ODE solutions obtained allow one to investigate the effect of large deflection amplitude on the vibration frequencies or periods. (C) 2008 Elsevier Ltd. All rights reserved.
机译:应用无网格最小二乘有限差分法(LSFD)解决任意形状薄板的大振幅自由振动问题。在该近似数值方法中,将一个点处的函数的空间导数表示为一组支持点的函数值的加权和。此方法可用于求解偏微分方程(PDE)的强形式,由于其无网格和局部近似特性,因此在解决具有复杂域几何形状的问题时特别有用。在这项研究中,薄板的位移分量是由空间函数和周期时间函数的乘积构成的。因此,就时间函数而言,非线性PDE简化为所有常微分方程(ODE)。这种无网格方法的准确性,简单性和效率已针对具有简单形状和复杂形状的板进行了演示。所获得的ODE解决方案使人们能够研究大挠度振幅对振动频率或周期的影响。 (C)2008 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号