...
首页> 外文期刊>Journal of solid state electrochemistry >Electrochemical behavior of lithium-rich layered oxide Li[Li0.23Ni0.15Mn0.62]O-2 cathode material for lithium-ion battery
【24h】

Electrochemical behavior of lithium-rich layered oxide Li[Li0.23Ni0.15Mn0.62]O-2 cathode material for lithium-ion battery

机译:锂离子电池富锂层状氧化物Li [Li0.23Ni0.15Mn0.62] O-2正极材料的电化学行为

获取原文
获取原文并翻译 | 示例

摘要

Lithium-rich layered oxide Li[Li0.23Ni0.15Mn0.62]O-2, which also can be written as 0.6Li(2)MnO(3)center dot 0.4LiNi(0.5)Mn(0.5)O(2) or 0.9Li[Li1/3Mn2/3]O-2 center dot 0.4LiNi(0.5)Mn(0.5)O(2), is synthesized using a solid-state reaction method. Its crystal structure and electrochemical behavior as the cathode material in lithium-ion batteries are studied. A reaction mechanism is proposed to interpret its unique electrochemical behavior shown in the first charge-discharge cycle. It includes four reactions: (1) LiNi0.5Mn0.5O2 -{L-End} > aEuro parts per thousand Li+ + Ni0.5Mn0.5O2 + e(-), (2) Li[Li1/3Mn2/3]O-2 -{L-End} > aEuro parts per thousand Li+ + [Li1/3Mn2/3]O-2 + e(-), (3) [Li1/3Mn2/3]O-2 -{L-End} > aEuro parts per thousand 1/3 Li+ + 2/3 MnO2 + 2/3 O center dot + e(-), and (4) Li+ + Ni0.2Mn0.8O2 + e(-) -{L-End} > aEuro parts per thousand LiNi0.2Mn0.8O2. The extraction of oxygen atoms (O center dot) in the reaction (3) results in the crystal structure rearrangement. Based on this hypothesis, it is found that the expected capacity of activated lithium-rich layered oxide xLi(2)MnO(3)center dot(1 -aEuro parts per thousand x)LiNi0.5Mn0.5O2 (0 a parts per thousand currency signaEuro parts per thousand x a parts per thousand currency signaEuro parts per thousand 1) increases from 230 to 280 mAh g(-1) with increasing x value. Li[Li0.23Ni0.15Mn0.62]O-2 has an expected total first charge capacity of 396 mAh g(-1), but its expected capacity is only 247 mAh g(-1) due to an initial capacity loss caused by the oxygen loss. Experimentally, within a charge-discharge voltage window from 2.0 to 4.8 V, Li[Li0.23Ni0.15Mn0.62]O-2 delivers a charge capacity of 310 mAh g(-1) and a discharge capacity of 215 mAh g(-1), respectively, at 40 mA g(-1) during the first cycle. The electrochemical kinetic behavior of Li[Li0.23Ni0.15Mn0.62]O-2 is controlled by the charge-transfer process rather than by Li+ diffusion or blockage of solid-electrolyte interphase (SEI) layers at the end of Li+ extraction in the first charge.
机译:富锂层状氧化物Li [Li0.23Ni0.15Mn0.62] O-2,也可以写成0.6Li(2)MnO(3)中心点0.4LiNi(0.5)Mn(0.5)O(2)或使用固态反应方法合成了0.9Li [Li1 / 3Mn2 / 3] O-2中心点0.4LiNi(0.5)Mn(0.5)O(2)。研究了其作为锂离子电池正极材料的晶体结构和电化学行为。提出了一种反应机理来解释其在第一个充放电循环中显示的独特电化学行为。它包括四个反应:(1)LiNi0.5Mn0.5O2-{L-End}>欧元每百万Li + + Ni0.5Mn0.5O2 + e(-),(2)Li [Li1 / 3Mn2 / 3] O- 2-{L-末端}>欧元每千Li + + [Li1 / 3Mn2 / 3] O-2 + e(-),(3)[Li1 / 3Mn2 / 3] O-2-{L-末端}> aEuro千分之一1/3 Li + + 2/3 MnO2 + 2/3 O中心点+ e(-),以及(4)Li + + Ni0.2Mn0.8O2 + e(-)-{L-End}> aEuro千分之几的LiNi0.2Mn0.8O2。反应(3)中氧原子的提取(O中心点)导致晶体结构重排。基于此假设,发现活化的富锂层状氧化物xLi(2)MnO(3)中心点(1-aEuro千分之一x)LiNi0.5Mn0.5O2(0 a千分之一货币)的预期容量每1000千个x千分之一的货币数量x千分之一千货币中的千亿个千分率1)随着x值的增加,从230 mAh g(-1)增加到280 mAh。 Li [Li0.23Ni0.15Mn0.62] O-2的预期总首次充电容量为396 mAh g(-1),但由于电池的初始容量损失,其预期容量仅为247 mAh g(-1)。氧气损失。实验中,Li [Li0.23Ni0.15Mn0.15Mn0.62] O-2在2.0到4.8 V的充放电电压范围内,充电容量为310 mAh g(-1),放电容量为215 mAh g(- 1)分别在第一个循环中以40 mA g(-1)充电。 Li [Li0.23Ni0.15Mn0.62] O-2的电化学动力学行为是通过电荷转移过程控制的,而不是通过Li +扩散或固体电解质中间相(SEI)层在Li +萃取结束时的阻塞来控制的。第一次充电。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号