首页> 外文期刊>Journal of solid state electrochemistry >Fabrication of ferric chloride doped polyaniline/multilayer super-short carbon nanotube nanocomposites for supercapacitor applications
【24h】

Fabrication of ferric chloride doped polyaniline/multilayer super-short carbon nanotube nanocomposites for supercapacitor applications

机译:超级电容器应用中氯化铁掺杂的聚苯胺/多层超短碳纳米管纳米复合材料的制备

获取原文
获取原文并翻译 | 示例
           

摘要

Multilayer super-short carbon nanotubes (SSCNTs) could be synthesized by tailoring the raw multiwalled carbon nanotubes (MWCNTs) with a simple ultrasonic oxidation-cut method. The present study represents a facile method for the preparation of FeCl3-doped PANI/SSCNTs (PANI/SSCNTs/Fe3+) composites as a supercapacitor electrode material with noteworthy performance. The materials were fabricated through in situ polymerization of ferric chloride-doped aniline in the presence of SSCNTs in HCl medium, and were characterized by FTIR and Raman spectroscopy and an XRD study. Field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) analyses confirmed the successful coating of Fe3+-doped PANI on the SSCNTs surface. The electrochemical characterizations were carried out by a three-electrode probe method, with 3 M NaOH as the electrolyte. Galvanostatic charge-discharge test established the superiority of the PANI/SSCNTs/Fe3+ nanocomposite as a supercapacitor electrode material with maximum specific capacitance of 727 F g(-1) at 1 A g(-1), and 92 % of initial specific capacitance retention over 1000 number of charge discharge cycle. Moreover, the as-prepared nanocomposites showed higher electrical conductivity of 6.5 S cm(-1) at room temperature.
机译:多层超短碳纳米管(SSCNT)可以通过使用简单的超声氧化切割方法定制原始的多壁碳纳米管(MWCNT)来合成。本研究代表了一种制备FeCl3掺杂的PANI / SSCNTs(PANI / SSCNTs / Fe3 +)复合材料作为超级电容器电极材料的简便方法,具有出色的性能。该材料是在HCl介质中在SSCNTs存在下通过氯化铁掺杂的苯胺的原位聚合制备的,并通过FTIR和拉曼光谱和XRD研究对其进行了表征。场发射扫描电子显微镜(FESEM)和透射电子显微镜(TEM)分析证实,在SSCNTs表面成功涂覆了Fe3 +掺杂的PANI。电化学表征通过三电极探针法,以3M NaOH为电解质进行。恒电流充放电测试确立了PANI / SSCNTs / Fe3 +纳米复合材料作为超级电容器电极材料的优越性,在1 A g(-1)时的最大比电容为727 F g(-1),并且初始比电容保留率为92%超过1000个电荷放电循环次数。此外,所制备的纳米复合材料在室温下显示出更高的电导率,为6.5 S cm(-1)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号