...
首页> 外文期刊>Journal of solid state electrochemistry >A broad pore size distribution mesoporous SnO _2 as anode for lithium-ion batteries
【24h】

A broad pore size distribution mesoporous SnO _2 as anode for lithium-ion batteries

机译:孔径分布宽的介孔SnO _2作为锂离子电池的负极

获取原文
获取原文并翻译 | 示例

摘要

We demonstrate here that mesoporous tin dioxide (abbreviated M-SnO _2) with a broad pore size distribution can be a prospective anode in lithium-ion batteries. M-SnO _2 with pore size ranging between 2 and 7.5 nm was synthesized using a hydrothermal procedure involving two different surfactants of slightly different sizes, and characterized. The irreversible capacity loss that occurs during the first discharge and charge cycle is 890 mAh g ~(-1), which is smaller than the 1,010-mAh g ~(-1) loss recorded for mesoporous SnO _2 (abbreviated S-SnO _2) synthesized using a single surfactant. After 50 cycles, the discharge capacity of M-SnO _2 (504 mAh g ~(-1)) is higher than that of S-SnO _2 (401 mAh g ~(-1)) and solid nanoparticles of SnO 2 (abbreviated nano-SnO _2<4 mAh g ~(-1)) and nano-SnO _2. Transmission electron microscopy revealed higher disorder in the pore arrangement in M-SnO _2. This, in turn imparts lower stiffness to M-SnO _2 (elastic modulus, E R≈14.5 GPa) vis-a-vis S-SnO _2 (E _R≈20.5 GPa), as obtained using the nanoindenta-tion technique. Thus, the superior battery performance of M-SnO _2 is attributed to its intrinsic material mechanical property. The fluidity of the internal microstructure of M-SnO _2 resulted in a lower degree of aggregation of Sn particles compared to S-SnO _2 and nano-SnO _2 structural stabilization and long-term cyclability.
机译:我们在这里证明具有宽孔径分布的中孔二氧化锡(缩写为M-SnO _2)可以成为锂离子电池中的预期阳极。使用水热程序合成了孔径在2到7.5 nm之间的M-SnO _2,该程序涉及两种大小略有不同的表面活性剂,并进行了表征。在第一个放电和充电周期期间发生的不可逆容量损失为890 mAh g〜(-1),小于中孔SnO _2(缩写为S-SnO _2)记录的1,010-mAh g〜(-1)损失。使用单一表面活性剂合成。经过50个循环后,M-SnO _2(504 mAh g〜(-1))的放电容量高于S-SnO _2(401 mAh g〜(-1))和SnO 2的固体纳米颗粒(缩写为nano -SnO _2 <4 mAh g〜(-1))和纳米SnO _2。透射电子显微镜显示M-SnO _2中的孔排列较高。这反过来赋予了M-SnO _2较低的刚度(弹性模量,ER≈14.5GPa),而与S-SnO _2(E_R≈20.5GPa)相比,具有较低的刚度,这是使用纳米感测技术获得的。因此,M-SnO _2优异的电池性能归因于其固有的材料机械性能。与S-SnO _2相比,M-SnO _2内部微观结构的流动性导致Sn颗粒的聚集度较低,并且纳米SnO _2的结构稳定并具有长期可循环性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号