...
【24h】

Biokinetic models for radiocaesium and its progeny

机译:放射性铯及其后代的生物动力学模型

获取原文
获取原文并翻译 | 示例
           

摘要

The International Commission on Radiological Protection (ICRP) is preparing a series of reports that will provide updated biokinetic and dosimetric models and dose coefficients for occupational intake of radionuclides. The biokinetic modelling scheme continues a trend in ICRP reports towards physiologically realistic descriptions of the time-dependent behaviour of absorbed radionuclides and their radioactive progeny. This paper proposes systemic biokinetic models for caesium isotopes and their ingrowing chain members and examines the dosimetric implications of the proposed models. Comparisons of D_(68) = tissue dose per unit input to blood based on current ICRP models for workers (ICRP Publication 68, 1994) with DP = corresponding values based on the proposed biokinetic models (but using the dosimetry models of Publication 68) yields the following ranges of the ratios D_P:D_(68) for the tissues addressed in Publication 68: 0.5-25 for ~(130)Cs (T 1/2= 29.2 min), 0.6-9.5 for ~(134m)Cs (2.9 h), 0.7-1.7 for ~(131)Cs (9.69 d), 0.7-1.1 for ~(134)Cs (2.06 y), 0.5-1.9 for ~(137)Cs (30.2 y) and 0.2-3.7 for ~(135)Cs (2.3 × 10~6 y). The large differences in the derived dose coefficients for some tissues and caesium isotopes, particularly short-lived isotopes, result mainly from differences in predictions of the time-dependent distributions of caesium in the body. For example, the proposed model and the current ICRP model for occupational intake of caesium predict peak kidney contents of ~22% and ~0.4%, respectively, following intravenous injection of stable caesium. Based on the proposed models for caesium and its progeny, the only dosimetrically significant chain members of caesium isotopes with half-life ≥10 min are ~(137)mBa, which represents 32-85% of the estimated tissue doses from injected ~(137)Cs, and ~(134)Cs, which represents 4-53% of the estimated tissue doses from injected ~(134)mCs.
机译:国际放射防护委员会(ICRP)正在准备一系列报告,这些报告将提供放射性核素职业摄入的最新生物动力学和剂量学模型以及剂量系数。生物动力学建模方案继续在ICRP报告中朝着对吸收的放射性核素及其放射性后代随时间变化的行为进行生理逼真的描述的趋势。本文提出了铯同位素及其向内生长链成员的系统生物动力学模型,并研究了所提出模型的剂量学意义。 D_(68)=基于当前工人的ICRP模型(ICRP出版物68,1994)的单位血液输入单位剂量,DP =基于建议的生物动力学模型(但使用出版物68的剂量学模型)的相应值出版物68所述组织的比率D_P:D_(68)的以下范围:〜(130)Cs(T 1/2 = 29.2分钟)为0.5-25,〜(134m)Cs(2.9为0.6-9.5) h),〜(131)Cs(9.66 d)为0.7-1.7,〜(134)Cs(2.06 y)为0.7-1.1,〜(137)Cs(30.2 y)为0.5-1.9和~~(137)Cs(30.2 y)为0.2-3.7 (135)Cs(2.3×10〜6年)对于某些组织和铯同位素,特别是短寿命同位素,得出的剂量系数差异很大,这主要是由于铯在体内随时间变化的分布预测中的差异所致。例如,建议的模型和目前的铯职业摄入量ICRP模型预测,在静脉内注射稳定的铯后,肾脏峰值含量分别为〜22%和〜0.4%。根据建议的铯及其子代模型,半衰期≥10分钟的铯同位素唯一在剂量学上重要的链成员为〜(137)mBa,占注射的〜(137)估计组织剂量的32-85%。 Cs和〜(134)Cs,约占注射的〜(134)mCs估计组织剂量的4-53%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号