...
首页> 外文期刊>Journal of Petroleum Science & Engineering >A comparison of a fractional derivative model with an empirical model for non-linear shock waves in swelling shales
【24h】

A comparison of a fractional derivative model with an empirical model for non-linear shock waves in swelling shales

机译:膨胀页岩非线性冲击波的分数阶导数模型与经验模型的比较

获取原文
获取原文并翻译 | 示例
           

摘要

The control of drilling parameters, such as fluid pressure, mud weight, salt concentration, etc., is essential to avoid instabilities when drilling through shale sections. To investigate shale deformation, which is fundamental for deep oil drilling and hydraulic fracturing for gas extraction ("fracking"), a nonlinear model of mechanical and chemo-poroelastic interactions among fluids, solutes and the solid matrix is discussed here. The two equations of this model describe the isothermal evolution of fluid pressure and solute density in a fluid-saturated porous rock. If the non-linear term in these equations is larger than the diffusive term the solutions are quick, non-linear Burgers solitary waves, which are potentially destructive for deep operations. In our study the role of diffusion in presence of these solitary waves has been also analyzed. Then, following Civan (1998), both diffusive and shock waves are applied to fine particle filtration and their effects on the adjacent rocks. Finally, the resulting time-delayed evolution is discussed. Because time delays in simple porous media dynamics have recently been analysed using a fractional derivative approach, we insert fractional time derivatives, Le., a type of timeaverage of the fluid-rock interactions, to make a tentative comparison of these two deeply different methods in our model. The delaying effects of fine particle filtration a la Civan (1998) are then compared with the time delay of the fractional derivative model; thus, the fractional derivative order for this filtration is realistically estimated. Such a comparison can be seen as a heuristic determination of "natural" time averages for fine particle related phenomena in this model. (C) 2014 Elsevier B.V. All rights reserved.
机译:对钻井参数的控制,例如流体压力,泥浆重量,盐浓度等,对于避免在通过页岩段钻井时的不稳定至关重要。为了研究页岩变形,页岩变形是深层石油钻探和水力压裂以提取天然气(“压裂”)的基础,这里讨论了流体,溶质和固体基质之间的机械和化学-孔隙弹性相互作用的非线性模型。该模型的两个方程描述了流体饱和多孔岩石中流体压力和溶质密度的等温演化。如果这些方程式中的非线性项大于扩散项,则解决方案是快速的非线性Burgers孤立波,这可能会对深度操作造成破坏。在我们的研究中,还分析了在这些孤立波存在下扩散的作用。然后,根据Civan(1998),将扩散波和冲击波都应用于细颗粒过滤及其对相邻岩石的影响。最后,讨论了由此产生的时延演化。由于最近已经使用分数导数方法分析了简单多孔介质动力学中的时间延迟,因此我们插入分数时间导数Le。(一种流体-岩石相互作用的时间平均值),以初步比较这两种方法。我们的模型。然后将细颗粒过滤的延迟效果(la Civan(1998))与分数导数模型的时间延迟进行了比较。因此,实际估算了该过滤的分数导数阶数。可以将这种比较视为该模型中与微粒相关的现象的“自然”时间平均值的启发式确定。 (C)2014 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号