...
首页> 外文期刊>Journal of Quantitative Spectroscopy & Radiative Transfer >Radiative heat transfer in strongly forward scattering media using the discrete ordinates method
【24h】

Radiative heat transfer in strongly forward scattering media using the discrete ordinates method

机译:离散坐标法在强向前散射介质中的辐射传热

获取原文
获取原文并翻译 | 示例

摘要

The discrete ordinates method (DOM) is widely used to solve the radiative transfer equation, often yielding satisfactory results. However, in the presence of strongly forward scattering media, this method does not generally conserve the scattering energy and the phase function asymmetry factor. Because of this, the normalization of the phase function has been proposed to guarantee that the scattering energy and the asymmetry factor are conserved. Various authors have used different normalization techniques. Three of these are compared in the present work, along with two other methods, one based on the finite volume method (FVM) and another one based on the spherical harmonics discrete ordinates method (SHDOM). In addition, the approximation of the Henyey-Greenstein phase function by a different one is investigated as an alternative to the phase function normalization. The approximate phase function is given by the sum of a Dirac delta function, which accounts for the forward scattering peak, and a smoother scaled phase function. In this study, these techniques are applied to three scalar radiative transfer test cases, namely a three-dimensional cubic domain with a purely scattering medium, an axisymmetric cylindrical enclosure containing an emitting-absorbing-scattering medium, and a three-dimensional transient problem with collimated irradiation. The present results show that accurate predictions are achieved for strongly forward scattering media when the phase function is normalized in such a way that both the scattered energy and the phase function asymmetry factor are conserved. The normalization of the phase function may be avoided using the FVM or the SHDOM to evaluate the in-scattering term of the radiative transfer equation. Both methods yield results whose accuracy is similar to that obtained using the DOM along with normalization of the phase function. Very satisfactory predictions were also achieved using the delta-M phase function, while the delta-Eddington phase function and the transport approximation may perform poorly. (C) 2015 Elsevier Ltd. All rights reserved.
机译:离散纵坐标法(DOM)广泛用于求解辐射传递方程,通常会产生令人满意的结果。但是,在存在强向前散射介质的情况下,此方法通常不会保留散射能量和相位函数不对称因子。因此,提出了相位函数的归一化以确保保留散射能量和不对称因子。许多作者使用了不同的归一化技术。在本工作中,对其中的三种方法以及其他两种方法进行了比较,一种基于有限体积方法(FVM),另一种基于球谐离散坐标法(SHDOM)。此外,还研究了另一种近似Henyey-Greenstein相函数的方法,以替代相函数归一化。近似相位函数由占正向散射峰的Dirac delta函数和更平滑的缩放相位函数之和给出。在这项研究中,将这些技术应用于三个标量辐射传递测试案例,即具有纯散射介质的三维立方域,包含发射-吸收-散射介质的轴对称圆柱外壳以及具有以下项的三维瞬态问题:准直照射。目前的结果表明,当以使散射能量和相位函数不对称因子均得到保留的方式对相位函数进行归一化时,就可以对强向前散射介质实现准确的预测。使用FVM或SHDOM评估辐射传递方程的散射项可以避免相位函数的归一化。两种方法都产生结果,其准确性与使用DOM以及相位函数的归一化所获得的准确性相似。使用delta-M相位函数也获得了非常令人满意的预测,而delta-Eddington相位函数和传输近似可能表现不佳。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号