首页> 外文期刊>Journal of Plant Nutrition >Effect of nutrient solution, nitrate-nitrogen concentration, and pH on nitrification rate in perlite medium.
【24h】

Effect of nutrient solution, nitrate-nitrogen concentration, and pH on nitrification rate in perlite medium.

机译:营养液,硝态氮浓度和pH值对珍珠岩培养基硝化速率的影响。

获取原文
获取原文并翻译 | 示例
           

摘要

Reconciling water quality parameters in sustainable aquaponic (integrated hydroponic and recirculating aquaculture) systems requires balancing nutrients and pH for the optimal growth of three organisms: the plant, the fish, and the nitrifying bacteria. Nitrifying bacteria convert fish waste into nitrate (NO3-)-nitrogen (N) that may be used by the plants. Fish waste rarely supplies nutrients in adequate amounts for plants without supplementation. Increasing nitrification rate and efficiency would allow greater stocking density for fish and increased nutrient loads for plants. The objective of this research was to determine the nitrification rate response in a perlite trickling biofilter (root growth medium) exposed to hydroponic nutrient solution, varying NO3--N concentrations, and to pH levels optimum for plants (6.5) and nitrification (8.5). The experiment used recirculating tank batch culture and was based on typical startup characteristics for bringing biological filters up to full capacity in aquaculture systems. No significant difference (P value <0.05) in nitrification rate was found when recirculating system water contained no nutrient solution versus a complete hydroponic nutrient solution or NO3--N concentrations of 0, 100, or 200 mg/L. These results indicate that hydroponic plant nutrient supplementation to concentrations found in plant production systems do not significantly affect nitrification rate in perlite medium. Nitrification was significantly impacted by water pH. Ammonia (NH3) oxidation of initial total ammonia nitrogen (TAN=ammonium (NH4+)-N+NH3-N=8 mg/L) occurred at the rates of 231 and 300 micro g L-1 d-1 at pH 6.5 and 400 and 540 micro g L-1 d-1 at pH 8.5, for experiments 1 and 2, respectively. The rates proceeded 1.75 times faster at pH 8.5 than at pH 6.5. Nitrite (NO2-) oxidation occurred at the rates of 231 and 375 micro g L-1 d-1 for pH 6.5 and 267 and 540 micro g L-1 d-1 for pH 8.5 and proceeded 1.2 and 1.4 times faster, respectively. The increased ammonia oxidation rate (1.75) compared to nitrite oxidation rate (1.3) at pH 8.5 resulted in accumulation of NO2--N to levels near those harmful to plants and fish (observed peaks of 4.2 and 3.8 mg/L NO2--N, respectively). The potential for increased levels of un-ionized ammonia, which are toxic to fish and reduced plant nutrient uptake from micronutrient precipitation, are additional problems associated with pH 8.5. The advantages of increased nitrification efficiency, which averaged 23% in the current trials at the higher pH, when weighed against the potential increased water quality risks to the fish and plant, justify a compromise between pH optima for nitrification and plant production to pH 7 for aquaponic system water. A more flexible management strategy for these systems would be to supplement with plant nutrients, which would permit less reliance on the fish and nitrification to provide optimal plant nutrient levels..
机译:在可持续的水培(集成水培和循环水产养殖)系统中协调水质参数需要平衡营养和pH值,以使三种生物(植物,鱼类和硝化细菌)最佳生长。硝化细菌将鱼粪转化为植物可利用的硝酸盐(NO3-)-氮(N)。鱼粪很少为植物补充营养,而没有补充营养。硝化速率和效率的提高将使鱼类的放养密度更高,植物的养分含量更高。这项研究的目的是确定珍珠岩滴滤生物滤池(根生长培养基)中的硝化速率响应,该滤池暴露于水培营养液,不同的NO3--N浓度以及对植物最佳的pH值(6.5)和硝化(8.5) 。该实验使用循环罐分批培养,并且基于典型的启动特性,可将生物过滤器提升到水产养殖系统的最大容量。当循环系统水不包含营养液或完全水培营养液或NO3--N浓度为0、100或200 mg / L时,硝化速率没有显着差异(P值<0.05)。这些结果表明,对植物生产系统中发现的水培植物营养物进行补充不会显着影响珍珠岩培养基中的硝化率。硝化作用受到水pH值的显着影响。初始总氨氮(TAN =铵(NH4 +)-N + NH3-N = 8 mg / L)的氨(NH3)氧化在pH 6.5和400下分别为231和300 micro g L-1 d-1实验1和2分别在pH 8.5和540微克L-1 d-1下进行。在pH 8.5时,速率比在pH 6.5时快1.75倍。在pH值为6.5时,亚硝酸盐(NO2-)的氧化速率为231和375 micro g L-1 d-1;在pH值为8.5时,硝酸盐的氧化速率为267和540 micro g L-1 d-1,分别发生了1.2和1.4倍的速度。与pH 8.5的亚硝酸盐氧化速率(1.3)相比,氨氧化速率(1.75)升高,导致NO2--N累积至接近对植物和鱼类有害的水平(观察到的峰值为4.2和3.8 mg / L NO2--N) , 分别)。 pH 8.5可能会增加对鱼类有毒的未离子化氨水平,并可能因微量营养素沉淀而减少植物对营养素的吸收,这是与pH值8.5相关的其他问题。硝化效率提高的优点(在当前试验中,在较高的pH值下平均达到23%),权衡可能对鱼类和植物造成的水质风险的增加,证明了硝化作用的最适pH和植物的pH值达到7时必须折衷。水生系统水。对于这些系统,更灵活的管理策略是补充植物营养素,这将减少对鱼类的依赖和硝化作用以提供最佳植物营养素水平。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号