...
首页> 外文期刊>Journal of liquid chromatography and related technologies >Application of chemometric response surface methodology in development and optimization of a RP-HPLC method for the separation of metaxalone and its base hydrolytic impurities
【24h】

Application of chemometric response surface methodology in development and optimization of a RP-HPLC method for the separation of metaxalone and its base hydrolytic impurities

机译:化学计量响应面法在RP-HPLC分离和优化美他沙酮及其碱水解杂质分离中的应用

获取原文
获取原文并翻译 | 示例

摘要

Owing to know the complexity in reverse phase high performance liquid chromatography (RP-HPLC) method optimization; i.e., the selection of optimum combination of input variables for achieving the desired separation, a mathematical relationship between the experimental variables with the responses is to be established by response surface methodology. The paper aims to describe the use of the Box-Behnken experimental design to identify the significant variables effects influencing the separation of metaxalone (MTX) and its two base hydrolytic impurities (DP-1 and DP-2) in a stability indicating RP-HPLC method. Influence variables such as column temperature, buffer pH, and buffer concentration, each at three levels were screened for the desirability of responses like theoretical plates, resolution (MTX-DP-1), capacity factor of MTX, tailing factor at 10% (MTX), and analysis time (R t of DP-2). A statistical program (Design Expert 8.0) was used to calculate and optimize the five responses simultaneously by means of a multiple response optimization algorithm. The optimum conditions are established including the robustness of the method using a Box-Behnken design, as part of the validation exercise. 10 mM phosphate buffer with pH 4.7 at 31癈 column temperature was found to be the optimized condition to produce desirable responses. System suitability limits were defined based on the results of the robustness test. The RP-HPLC method was further validated with respect to linearity, range, precision, specificity, accuracy, limit of detection, and limit of quantification, according to the current regulatory requirements. The optimized method gives rapid and efficient separation with complete resolution between the three peaks, and represents an improvement over the existing reported methods.
机译:由于了解反相高效​​液相色谱(RP-HPLC)方法优化的复杂性;即,选择用于实现期望分离的输入变量的最佳组合,将通过响应面方法建立实验变量与响应之间的数学关系。本文旨在描述Box-Behnken实验设计在确定稳定性的RP-HPLC中识别影响美他沙酮(MTX)及其两种基本水解杂质(DP-1和DP-2)的重要变量影响的用途方法。在三个水平上分别对影响变量(例如柱温,缓冲液pH和缓冲液浓度)进行筛选,以确定其是否符合响应条件,例如理论塔板数,分离度(MTX-DP-1),MTX的容量因子,10%的拖尾因子(MTX) )和分析时间(DP-2的R t)。统计程序(Design Expert 8.0)用于通过多重响应优化算法同时计算和优化五个响应。确定最佳条件,包括使用Box-Behnken设计的方法的稳健性,作为验证工作的一部分。发现在31癈柱温下pH为4.7的10 mM磷酸盐缓冲液是产生所需响应的最佳条件。系统适应性限制是根据健壮性测试的结果定义的。根据目前的法规要求,对RP-HPLC方法的线性,范围,精度,特异性,准确性,检测限和定量限进行了进一步验证。优化的方法可以快速有效地分离三个峰,并具有完全的分离度,是对现有方法的改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号