...
首页> 外文期刊>Journal of Protein Chemistry >The polymer basis of kinetics and equilibria of enzymes: the accessible-volume origin of entropy changes in a class Abeta-lactamase.
【24h】

The polymer basis of kinetics and equilibria of enzymes: the accessible-volume origin of entropy changes in a class Abeta-lactamase.

机译:酶动力学和平衡的聚合物基础:Abeta-内酰胺酶类中熵变化的可到达体积起点。

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The occurrence of enzymatic catalysis, as for any chemical reaction, depends critically upon close contact of the reactants, since making/breaking of bonds occurs over distances of about 0.2 A. Unlike small molecules, each enzyme molecule acts as an ordered solvent and reactant. Each group important to the enzyme reaction interacts with the substrate, then moves away, and subsequently binds another substrate. In other words, the group undergoes round trips in structure. For a round trip, the thermochemical state functions deltaG, deltaH, deltaS, etc., are zero. As a consequence, control of the binding of substrate must reside in the nonbinding conformations of the polymer since they govern the different fractions of time the macromolecule is in the correct conformation for bonding. Applying standard macromolecular models to the enzymes suggests that the majority of free energy for an enzyme reaction resides in the enzyme structure as an entropic contribution. Enthalpic contributions come from bond formation with the substrates and substrate structural changes. Further, it is shown that the molecular mechanisms that can effect binding and allosteric control fall into only three classes. Three x-ray structures of class A beta-lactamases (native, mutant, and with substrate) show the individual binding groups at the active site change their accessible volumes depending on substrate binding and mutant form. From these volume differences, the deltaS of reaction is calculated. The x-ray-derived deltaG = - TdeltaS matches the deltaG = -RT ln k1 from changes in rate constants for the same set of beta-penicillinases.
机译:对于任何化学反应,酶催化作用的发生都主要取决于反应物的紧密接触,因为键的形成/断裂发生在大约0.2 A的距离上。与小分子不同,每个酶分子都充当有序的溶剂和反应物。对酶反应重要的每个基团与底物相互作用,然后移开,然后结合另一个底物。换句话说,该小组在结构上经历了往返。对于往返行程,热化学状态函数deltaG,deltaH,deltaS等为零。结果,对底物结合的控制必须存在于聚合物的非结合构象中,因为它们控制大分子处于用于结合的正确构象的不同时间分数。将标准的大分子模型应用于酶表明,酶反应的大部分自由能以熵的形式存在于酶结构中。焓的贡献来自与底物的键形成和底物结构的变化。此外,显示出可以影响结合和变构控制的分子机制仅分为三类。 A类β-内酰胺酶的三种X射线结构(天然,突变和带有底物)显示,活性位点上的单个结合基团会根据底物结合和突变形式改变其可及体积。根据这些体积差异,计算反应的ΔS。 X射线衍生的deltaG =-TdeltaS根据相同的一组β-青霉素酶的速率常数变化与deltaG = -RT ln k1相匹配。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号