首页> 外文期刊>Journal of Plant Physiology >Elevated CO2 increases water use efficiency by sustaining photosynthesis of water-limited maize and sorghum.
【24h】

Elevated CO2 increases water use efficiency by sustaining photosynthesis of water-limited maize and sorghum.

机译:高浓度的CO 2 通过维持水分受限的玉米和高粱的光合作用来提高水分利用效率。

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Maize and grain sorghum seeds were sown in pots and grown for 39 days in sunlit controlled-environment chambers at 360 (ambient) and 720 (double-ambient, elevated) micro mol mol-1 carbon dioxide concentrations [CO2]. Canopy net photosynthesis (PS) and evapotranspiration (TR) was measured throughout and summarized daily from 08:00 to 17:00 h Eastern Standard Time. Irrigation was withheld from matched pairs of treatments starting on 26 days after sowing (DAS). By 35 DAS, cumulative PS of drought-stress maize, compared to well-watered plants, was 41% lower under ambient [CO2] but only 13% lower under elevated [CO2]. In contrast, by 35 DAS, cumulative PS of drought-stress grain sorghum, compared to well-watered plants, was only 9% lower under ambient [CO2] and 7% lower under elevated [CO2]. During the 27-35 DAS drought period, water use efficiency (WUE, mol CO2 Kmol-1 H2O), was 3.99, 3.88, 5.50, and 8.65 for maize and 3.75, 4.43, 5.26, and 9.94 for grain sorghum, for ambient-[CO2] well-watered, ambient-[CO2] stressed, elevated-[CO2] well-watered and elevated-[CO2] stressed plants, respectively. Young plants of maize and sorghum used water more efficiently at elevated [CO2] than at ambient [CO2], especially under drought. Reductions in biomass by drought for young maize and grain sorghum plants were 42 and 36% at ambient [CO2], compared to 18 and 14% at elevated [CO2], respectively. Results of our water stress experiment demonstrated that maintenance of relatively high canopy photosynthetic rates in the face of decreased transpiration rates enhanced WUE in plants grown at elevated [CO2]. This confirms experimental evidence and conceptual models that suggest that an increase of intercellular [CO2] (or a sustained intercellular [CO2]) in the face of decreased stomatal conductance results in relative increases of growth of C4 plants. In short, drought stress in C4 crop plants can be ameliorated at elevated [CO2] as a result of lower stomatal conductance and sustaining intercellular [CO2]. Furthermore, less water might be required for C4 crops in future higher CO2 atmospheres, assuming weather and climate similar to present conditions.
机译:将玉米和高粱种子播种在盆中,并在阳光控制环境室中以360(环境)和720(双环境,升高的)微摩尔mol -1 二氧化碳浓度生长39天[ CO 2 ]。在东部标准时间的每天08:00至17:00,每天对树冠净光合作用(PS)和蒸散量(TR)进行测量并进行汇总。从播种后26天(DAS)开始,从匹配的处理对中停止灌溉。到35 DAS时,与水分充足的植物相比,干旱胁迫玉米的累积PS在环境[CO 2 ]下降低41%,但在升高的[CO 2 < / sub>]。相比之下,通过35 DAS,与水分充足的植物相比,干旱胁迫的谷物高粱的累积PS在环境[CO 2 ]下仅降低9%,在升高的[CO <2 sub> 2 ]。在27-35 DAS干旱期间,水分利用效率(WUE,摩尔CO 2 Kmol -1 H 2 O)为3.99,对于环境良好的[CO 2 ],环境良好的[CO 2 ]胁迫的,高[CO 2 ]水分充足的植物和升高的[CO 2 ]胁迫植物。玉米和高粱的年轻植物在升高的[CO 2 ]上比在环境下的[CO 2 ]上更有效地利用水,尤其是在干旱下。在环境[CO 2 ]下,玉米和高粱幼苗的干旱造成的生物量减少分别为42%和36%,而在[CO 2 ]升高时,其减少量分别为18%和14%。 , 分别。我们的水分胁迫实验结果表明,面对蒸腾速率降低的情况,维持较高的冠层光合速率可以提高在[CO 2 ]上生长的植物的WUE。这证实了实验证据和概念模型,表明面对气孔导度降低的结果,细胞间[CO 2 ](或持续的细胞间[CO 2 ])增加C 4 植物生长的相对增加简而言之,C 4 作物的干旱胁迫可以通过提高[CO 2 ]来缓解,这是由于气孔导度较低和维持细胞间[CO 2 < / sub>]。此外,假设天气和气候与当前状况相似,在未来更高的CO 2 大气中,C 4 作物可能需要的水量更少。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号