...
首页> 外文期刊>Journal of Physics, D. Applied Physics: A Europhysics Journal >Spatially resolved plasma diagnostic in an expanding microwave discharge containing an Ar-CH4 gas mixture: uniformity and stability of the discharge
【24h】

Spatially resolved plasma diagnostic in an expanding microwave discharge containing an Ar-CH4 gas mixture: uniformity and stability of the discharge

机译:在包含Ar-CH4气体混合物的扩展微波放电中的空间分辨等离子体诊断:放电的均匀性和稳定性

获取原文
获取原文并翻译 | 示例
           

摘要

Microwave expansion of a plasma is certainly a promising process by which to obtain a large-diameter plasma profile; however, it generates instability regions and local inhomogeneities. The purpose of this work is to study the wave-propagation conditions and plasma-expansion profile in a pure argon discharge and in argon-methane mixture. Spatially resolved plasma parameters are measured using an array of electrostatic probes (simple and double) moving along the discharge axis. This device gives radial and axial measurements which are correlated to the spatially resolved Ar(420 nm) emission line intensity. We show that, as expected, the wave-propagation conditions are satisfied within the luminous part of the discharge. In this region the electron energy distribution function (EEDF) can be roughly approximated by using a Maxwell distribution function of low temperature (about 1000 K). The absorbed microwave power is mainly transferred to electrons as potential energy. Instabilities appear at the edge of this luminous region, where the wave-propagation conditions are not satisfied. In this region the EEDF is strongly disturbed and cannot be approximated using a Maxwell distribution function. The microwave incident power is mainly reflected, so the potential energy of electrons decreases strongly. Nevertheless, the kinetic energy of electrons increases because of stochastic electron heating due to strong inhomogeneities in the charged particle density producing local electrical fields. When methane is mixed with argon, the energy necessary to maintain an electron free in the plasma increases with increasing frequency of inelastic collisions. Consequently, the plasma expansion length decreases with increasing percentage of methane added to argon.
机译:等离子体的微波膨胀当然是获得大直径等离子体轮廓的有前途的过程。但是,它会产生不稳定区域和局部不均匀性。这项工作的目的是研究纯氩气放电和氩气-甲烷混合物中的波传播条件和等离子体膨胀曲线。使用沿放电轴移动的一系列静电探针(简单探针和双重探针)测量空间分辨的血浆参数。该设备提供了径向和轴向测量值,这些测量值与空间分辨的Ar(420 nm)发射线强度相关。我们证明,正如预期的那样,在放电的发光部分内满足了波传播条件。在该区域中,可以通过使用低温(约1000 K)的麦克斯韦分布函数粗略估算电子能量分布函数(EEDF)。吸收的微波功率主要作为势能传递给电子。在不满足波传播条件的该发光区域的边缘出现不稳定性。在该区域,EEDF受到严重干扰,无法使用麦克斯韦分布函数近似。微波的入射功率主要被反射,因此电子的势能大大降低。然而,由于产生局部电场的带电粒子密度中强烈的不均匀性,由于随机的电子加热,电子的动能增加。当甲烷与氩气混合时,维持等离子体中自由电子所需的能量会随着非弹性碰撞频率的增加而增加。因此,等离子体膨胀长度随添加到氩气中甲烷的百分比增加而减小。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号