首页> 外文期刊>Journal of Physics, B. Atomic, Molecular and Optical Physics: An Institute of Physics Journal >Antihydrogen (H?) and muonic antihydrogen (H?μ) formation in low energy three-charge-particle collisions
【24h】

Antihydrogen (H?) and muonic antihydrogen (H?μ) formation in low energy three-charge-particle collisions

机译:低能三电荷粒子碰撞中的抗氢(H +)和离子性抗氢(H +μ)形成

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

A few-body formalism is applied for computation of two different three-charge-particle systems. The first system is a collision of a slow antiproton, p?, with a positronium atom: Ps= (e~+e-)-a bound state of an electron and a positron. The second problem is a collision of p? with a muonic muonium atom, i.e. true muoniuma bound state of two muons one positive and one negative: Ps_μ = (μ~+ + μ~-). The total cross section of the following two reactions: p? + (e~+e~-) → H? + e~- and p? + (μ~+ + μ~-) → H?_μ~+ μ~-, where H = (p?e~+) is antihydrogen and H?_μ = (p?μ~+) is a muonic antihydrogen atom, i.e. a bound state of p? and μ~+, are computed in the framework of a set of coupled two-component FaddeevHahn-type (FH-type) equations. Unlike the original Faddeev approach the FH-type equations are formulated in terms of only two but relevant components: ψ_1 and ψ_2, of the system's three-body wave function ψ, where ψ= ψ_1 + ψ_2. In order to solve the FH-type equations -1 is expanded in terms of the input channel target eigenfunctions, i.e. in this work in terms of, for example, the (μ~++ μ~-) atom eigenfunctions. At the same time ψ_2 is expanded in terms of the output channel two-body wave functions, that is in terms of H? _μ atom eigenfunctions. Additionally, a convenient total angular momentum projection is performed. Results for better known low energy μ~- transfer reactions from one hydrogen isotope to another hydrogen isotope in the cycle of muon catalyzed fusion (μCF) are also computed and presented.
机译:几体形式论被用于计算两个不同的三电荷粒子系统。第一个系统是慢的反质子p?与正电子原子的碰撞:Ps =(e〜+ e-)-电子与正电子的结合态。第二个问题是p的碰撞?带有mu离子的atom原子,即两个正负一个负子的真正muoniuma结合态:Ps_μ=(μ〜+ +μ〜-)。以下两个反应的总截面: +(e〜+ e〜-)→H? + e〜-和p? +(μ〜+ +μ〜-)→H?_μ〜+μ〜-,其中H =(p?e〜+)是抗氢原子,而H?_μ=(p?μ〜+)是单离子抗氢原子,即p的束缚状态?在一组耦合的两分量FaddeevHahn型(FH型)方程的框架内计算μ和。与原始的Faddeev方法不同,FH型方程式仅由系统三体波函数ψ中的两个但相关的分量ψ_1和ψ_2表示,其中ψ=ψ_1+ψ_2。为了求解FH型方程,在输入通道目标本征函数方面(即在本工作中,例如在(μ〜++μ〜-)原子本征函数方面),对-1进行了扩展。同时,ψ_2在输出通道两体波函数方面,即在H 2方面被扩展。 _μ个原子本征函数。另外,执行方便的总角动量投影。还计算并提出了在μ子催化聚变(μCF)循环中从一个氢同位素到另一个氢同位素的已知低能μ-转移反应的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号