...
首页> 外文期刊>Biopolymers: Original Research on Biomolecules and Biomolecular Assemblies >Exploring the Mechanism How Marburg Virus VP35 Recognizes and Binds dsRNA by Molecular Dynamics Simulations and Free Energy Calculations
【24h】

Exploring the Mechanism How Marburg Virus VP35 Recognizes and Binds dsRNA by Molecular Dynamics Simulations and Free Energy Calculations

机译:通过分子动力学模拟和自由能计算探索马尔堡病毒VP35识别和结合dsRNA的机制

获取原文
获取原文并翻译 | 示例
           

摘要

Filoviruses often cause terrible infectious disease which has not been successfully dealt with pharmacologically. All filoviruses encode a unique protein termed VP35 which can mask doubled-stranded RNA to deactivate interferon. The interface of VP35-dsRNA would be a feasible target for structure-based antiviral agent design. To explore the essence of VP35-dsRNA interaction, molecular dynamics simulation combined with MM-GBSA calculations were performed on Marburg virus VP35-dsRNA complex and several mutational complexes. The energetic analysis indicates that nonpolar interactions provide the main driving force for the binding process. Although the intermolecular electrostatic interactions play important roles in VP35-dsRNA interaction, the whole polar interactions are unfavorable for binding which result in a low binding affinity. Compared with wild type VP35, the studied mutants F228A, R271A, and K298A have obviously reduced binding free energies with dsRNA reflecting in the reduction of polar or nonpolar interactions. The results also indicate that the loss of binding affinity for one dsRNA strand would abolish the total binding affinity. Three important residues Arg271, Arg294, and Lys298 which makes the largest contribution for binding in VP35 lose their binding affinity significantly in mutants. The uncovering of VP35-dsRNA recognition mechanism will provide some insights for development of antiviral drug.
机译:丝状病毒通常引起可怕的传染病,尚未通过药理学成功地治疗。所有丝状病毒均编码称为VP35的独特蛋白质,该蛋白质可掩盖双链RNA从而使干扰素失活。 VP35-dsRNA的界面将是基于结构的抗病毒药物设计的可行目标。为了探索VP35-dsRNA相互作用的实质,对马尔堡病毒VP35-dsRNA复合物和几种突变复合物进行了分子动力学模拟,并结合MM-GBSA计算。能量分析表明,非极性相互作用为结合过程提供了主要驱动力。尽管分子间静电相互作用在VP35-dsRNA相互作用中起重要作用,但是整个极性相互作用不利于结合,这导致低的结合亲和力。与野生型VP35相比,研究的突变体F228A,R271A和K298A与dsRNA的结合自由能明显降低,这反映了极性或非极性相互作用的减少。结果还表明,对一条dsRNA链的结合亲和力的丧失将消除总的结合亲和力。对VP35的结合起最大作用的三个重要残基Arg271,Arg294和Lys298,在突变体中会显着丧失其结合亲和力。 VP35-dsRNA识别机制的发现将为抗病毒药物的开发提供一些见识。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号