...
首页> 外文期刊>Journal of phycology >Modeling phytoplankton abundance in Saginaw Bay, Lake Huron: Using artificial neural networks to discern functional influence of environmental variables and relevance to a great lakes observing system
【24h】

Modeling phytoplankton abundance in Saginaw Bay, Lake Huron: Using artificial neural networks to discern functional influence of environmental variables and relevance to a great lakes observing system

机译:休伦湖萨吉诺湾浮游植物丰度建模:使用人工神经网络识别环境变量的功能影响以及与大型湖泊观测系统的相关性

获取原文
获取原文并翻译 | 示例
           

摘要

Phytoplankton abundance, as chl a, in Saginaw Bay, Lake Huron was modeled using artificial neural networks. Suites of abiotic variables served as predictors for the trends/patterns in chl a concentrations. Spatial and temporal gradients of sampling stations throughout the bay were evident, with physical/chemical differences arising from hydrological/meteorological forcing and zebra mussel recruitment. Chlorophyll a concentrations displayed corresponding disparities; concentrations differed between the inner and outer bays and varied intra- and inter-annually. Trained networks reproduced the intrinsic variance and magnitude of chl a dynamics. Modeled-measured concentrations best approximated a 1:1 relationship in a hybrid network incorporating both supervised and unsupervised training whereas concentrations greater than 15 mu g/L were underestimated in networks utilizing only supervised training, likely because of inadequate training data. Variables indicative of phytoplankton nutrition, acting as proxy measurements of algal biomass, and/or corresponding to descriptors of hydrological and meteorological forcing had the greatest influence upon modeled concentrations. A conjunctive decision tree and a novel sensitivity analysis provided rule-based information and comprehensible interpretation of relationships among multiple predictor variables. From this, the "knowledge" embedded in trained networks proved extractable and usable for ecological theory generation and/or decision making within water-quality problem solving. Forecasting initiatives within the developing Great Lakes Observing System may be best served by embedding neural networks in mechanistic models to quantitatively initialize variables, qualitatively delineate conditions for projecting ecological structure, and/or estimate deviations from predictability within mechanistic simulations.
机译:使用人工神经网络对休伦湖萨吉诺湾的浮游植物丰度进行了建模。非生物变量套件可作为chl a浓度趋势/模式的预测指标。整个海湾采样站的时空梯度是明显的,其物理/化学差异是由水文/气象强迫和斑马贻贝募集引起的。叶绿素a浓度显示出相应的差异;内湾和外湾之间的浓度不同,并且年内和年际变化。受过训练的网络再现了chl a动力学的内在变化和幅度。在结合有监督和无监督训练的混合网络中,模型测量的浓度最接近1:1关系,而仅使用有监督训练的网络中低估了大于15μg / L的浓度,这可能是由于训练数据不足所致。指示浮游植物营养的变量,作为藻类生物量的替代度量,和/或与水文和气象强迫的描述相对应,对建模浓度影响最大。联合决策树和新颖的敏感性分析提供了基于规则的信息,并提供了对多个预测变量之间关系的全面理解。由此可见,嵌入受过训练的网络中的“知识”被证明是可提取的,可用于解决水质问题中的生态理论生成和/或决策。将神经网络嵌入机械模型中以定量地初始化变量,定性地描述用于预测生态结构的条件和/或估算机械模拟中可预测性的偏差,可以最好地服务于发展中的大湖观测系统中的预测计划。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号