首页> 外文期刊>Journal of Nuclear Materials: Materials Aspects of Fission and Fusion >Molecular dynamics simulation of irradiation-induced amorphization of cubic silicon carbide
【24h】

Molecular dynamics simulation of irradiation-induced amorphization of cubic silicon carbide

机译:立方碳化硅辐照诱导非晶化的分子动力学模拟

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

It has long been observed that a crystalline-to-amorphous (c-a) transition occurs in silicon carbide (SiC) irradiated at low temperature. However, the microscopic mechanisms leading to the transition are not well understood. We report in this paper a molecular dynamics (MD) simulation of low-energy (100 eV) recoil accumulation at cryogenic temperature (20 K), up to approximate to 1 dpa, in which the irradiated computational sample becomes amorphous and is subsequently annealed at high temperature (2320 K). The simulation suggests that, at least for low-mass impinging particles, provided that no direct impact amorphization (DIA) takes place, the driving forte for the c-a transition in this material is the accumulation of Frenkel pairs up to a critical concentration (approximate to 1.9 x 10(22) cm(-3)). The role of antisites in the process is negligible. In fact, antisite formation during the annealing could be the bottleneck for complete recovery. A simple and intuitive analytical model based on the concepts of recombination barriers and interstitial migration is also proposed, to describe the temperature dependence of the critical dose for amorphization. (C) 2001 Published by Elsevier Science B.V. [References: 100]
机译:长期以来,人们一直观察到在低温下辐照的碳化硅(SiC)中会发生晶体到非晶(c-a)的转变。但是,导致这种转变的微观机制尚不十分清楚。我们在本文中报告了在低温温度(20 K)时高达约1 dpa的低能(100 eV)后坐力积累的分子动力学(MD)模拟,其中辐照的计算样本变为非晶态,随后在高温(2320 K)。该模拟表明,至少对于低质量撞击粒子,只要不发生直接撞击非晶化(DIA),这种材料中ca转变的驱动力就是弗伦克尔对的积累达到临界浓度(近似于1.9 x 10(22)cm(-3))。反位点在该过程中的作用可忽略不计。实际上,在退火过程中形成反位点可能是完全回收的瓶颈。还提出了一种基于重组势垒和间隙迁移概念的简单直观的分析模型,用于描述非晶化关键剂量的温度依赖性。 (C)2001年由Elsevier Science B.V.出版[参考:100]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号