首页> 外文期刊>Journal of Nuclear Materials: Materials Aspects of Fission and Fusion >An initial assessment of a mechanistic model, GRASS-SST, in U-Pu-Zr metallic alloy fuel fission-gas behavior simulations
【24h】

An initial assessment of a mechanistic model, GRASS-SST, in U-Pu-Zr metallic alloy fuel fission-gas behavior simulations

机译:U-Pu-Zr金属合金燃料裂变气体行为模拟中的机械模型GRASS-SST的初始评估

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

A mechanistic kinetic rate theory model originally developed for the prediction of fission gas behavior in oxide nuclear fuels under steady-state and transient conditions has been assessed to investigate its applicability to model fission gas behavior in U-Pu-Zr metallic alloy fuel. In order to capture and validate the underlying physics for irradiated U-Pu-Zr fuels, the mechanistic model was applied to evaluate fission gas release, fission gas and fission product induced swelling, and detailed gas bubble size distributions in three different fuel zones: the outer α-U, the intermediate, and the inner γ-U zones. Due to its special microstructural features, the α-U zone in U-Pu-Zr fuels is believed to contribute the largest fraction of fission gas release among the different fuel zones. It is shown that with the use of small effective grain sizes, the mechanistic model can predict fission gas release that is in reasonable consistence with (though slightly lower than) experimentally measured data. These simulation results are comparable to the experimentally measured fission gas release since the mechanism of fission gas transport through the densely distributed laminar porosity in the α-U zone is analogous to the mechanism of fission gas transport through the interconnected gas bubble porosity utilized in the mechanistic model. Detailed gas bubble size distributions predicted with the mechanistic model in both the intermediate zone and the high temperature γ-U zone of U-Pu-Zr fuel are also compared to experimental measurements from available SEM micrographs. These comparisons show good agreement between the simulation results and experimental measurements, and therefore provide crucial guidelines for the selection of key physical parameters required for modeling these two zones. Material properties such as fuel grain size and thermal diffusivity of gas and model parameters such as di-atom nucleation probability and gas bubble re-solution constant are predicted by these comparisons. In addition, the results of parametric studies for several parameters are presented for both the intermediate zone and the γ-U zone simulations in order to clarify the sensitivities of simulation results on these parameters.
机译:为了评估其在U-Pu-Zr金属合金燃料中裂变气体行为建模中的适用性,评估了最初为预测氧化物核燃料在稳态和瞬态条件下裂变气体行为而建立的机械动力学速率理论模型。为了捕获和验证辐照的U-Pu-Zr燃料的基本物理原理,使用了机械模型来评估裂变气体释放,裂变气体和裂变产物引起的溶胀以及在三个不同燃料区域中详细的气泡尺寸分布:外部α-U,中间和内部γ-U区。由于其特殊的微观结构特征,U-Pu-Zr燃料中的α-U区被认为是不同燃料区中​​裂变气体释放量最大的部分。结果表明,通过使用较小的有效晶粒尺寸,该机理模型可以预测裂变气体的释放,该裂变气体的释放与实验测量的数据具有合理的一致性(尽管略低)。这些模拟结果与实验测量的裂变气体释放量相当,这是因为裂变气体通过α-U区中密集分布的层状孔隙传输的机制类似于裂变气体通过机制中互连的气泡孔隙传输的机制。模型。用机理模型预测的U-Pu-Zr燃料的中间区和高温γ-U区的详细气泡尺寸分布也与可得到的SEM显微照片的实验测量结果进行了比较。这些比较表明,仿真结果与实验测量值之间具有很好的一致性,因此为选择建模这两个区域所需的关键物理参数提供了至关重要的指导。通过这些比较,可以预测出诸如燃料粒度和气体的热扩散率等材料特性,以及诸如双原子成核概率和气泡再溶解常数等模型参数。此外,还针对中间区域和γ-U区域模拟提供了多个参数的参数研究结果,以阐明模拟结果对这些参数的敏感性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号