首页> 外文期刊>Journal of Nuclear Materials: Materials Aspects of Fission and Fusion >Lead-cooled system design and challenges in the frame of Generation IV International Forum
【24h】

Lead-cooled system design and challenges in the frame of Generation IV International Forum

机译:第四代国际论坛框架下的铅冷却系统设计和挑战

获取原文
获取原文并翻译 | 示例
       

摘要

The Generation IV International Forum (GIF) Technology Roadmap identified the Lead-cooled Fast Reactor (LFR) as a technology well suited for electricity generation, hydrogen production and actinide management in a closed fuel cycle. One of the most important features of the LFR is the fact that lead is a relatively inert coolant, a feature that conveys significant advantages in terms of safety, system simplification, and the consequent potential for economic performance. In 2004, the GIF LFR Provisional System Steering Committee was organized and began to develop the LFR System Research Plan. The committee selected two pool-type reactor concepts as candidates for international cooperation and joint development in the GIF framework: these are the Small Secure Transportable Autonomous Reactor (SSTAR); and the European Lead-cooled System (ELSY). The high boiling point (1745 °C) of lead has a beneficial impact to the safety of the system, whereas its high melting point (327.4 °C) requires new engineering strategies, especially for In-Service- Inspection and refuelling. Lead, especially at high temperatures, is also relatively corrosive towards structural materials. This necessitates that coolant purity and the level of dissolved oxygen be carefully controlled, in addition to the proper selection of structural materials. For the GIF LFR concepts, lead has been chosen as the coolant rather than Lead-Bismuth Eutectic primarily because of its greatly reduced generation of the alpha-emitting ~(210)Po isotope formed in the coolant. This results in significantly reduced levels of radioactive contamination of the coolant while minimizing the effect of decay power in the coolant from such contaminants; an additional consideration is the desire to eliminate dependence on bismuth which might be a limited resource. This paper provides an overview of the historical development of the LFR, a summary of the advantages and challenges associated with heavy liquid metal coolants, and an update of the current status of development of LFR concepts under consideration. The main characteristics of the SSTAR and ELSY systems are summarized, and the current status of design of each system is presented. Because of the significant recent efforts in the ELSY system design, greater emphasis is placed on the ELSY plant, with focus on the technological development and design provisions intended to overcome or alleviate recognized drawbacks to the use of heavy liquid metal coolants. In the case of the SSTAR system for which development has proceeded more slowly, a more limited summary is provided. It is noted that both systems share many of the same research needs and objectives thus providing a strong basis for international collaboration.
机译:第四代国际论坛(GIF)技术路线图将铅冷快堆(LFR)确定为非常适合在封闭燃料循环中进行发电,制氢和act系元素管理的技术。 LFR的最重要特征之一是铅是一种相对惰性的冷却剂,这一特征在安全性,系统简化以及随之而来的经济效益方面具有明显优势。 2004年,GIF LFR临时系统指导委员会成立,并开始制定LFR系统研究计划。该委员会选择了两种池式反应堆概念作为GIF框架中国际合作和联合发展的候选者:小型安全可运输自主反应堆(SSTAR);以及欧洲铅冷却系统(ELSY)。铅的高沸点(1745°C)对系统的安全性具有有益的影响,而铅的高熔点(327.4°C)则需要新的工程策略,尤其是在役检查和加油方面。铅,特别是在高温下,对结构材料也具有相对腐蚀性。除了正确选择结构材料外,还必须仔细控制冷却液的纯度和溶解氧的水平。对于GIF LFR概念,选择铅作为冷却剂而不是铅铋共晶,主要是因为它大大减少了在冷却剂中形成的发射α(210)Po同位素的产生。这导致冷却剂的放射性污染水平显着降低,同时使冷却剂中由于这种污染物引起的衰减功率的影响最小化。另一个考虑是希望消除对铋的依赖,而铋可能是一种有限的资源。本文概述了LFR的历史发展,总结了与重金属液态冷却剂相关的优势和挑战,并更新了正在考虑的LFR概念的发展现状。总结了SSTAR和ELSY系统的主要特点,并介绍了每个系统的设计现状。由于最近在ELSY系统设计方面做出了巨大的努力,因此ELSY工厂将更多的重点放在技术开发和设计上,以克服或减轻使用重液金属冷却剂的公认缺点。对于SSTAR系统,其开发进展较为缓慢,因此提供的摘要更为有限。值得注意的是,两个系统共享许多相同的研究需求和目标,从而为国际合作提供了坚实的基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号