...
首页> 外文期刊>Journal of nuclear engineering and radiation science >Neutronic Design Features of a Transportable Fluoride-Salt-Cooled High-Temperature Reactor
【24h】

Neutronic Design Features of a Transportable Fluoride-Salt-Cooled High-Temperature Reactor

机译:可运输的氟盐冷却高温反应堆的中子学设计特征

获取原文
获取原文并翻译 | 示例
           

摘要

The fluoride-salt-cooled high-temperature reactor (FHR) is a new reactor concept, which combines low-pressure liquid salt coolant and high-temperature tristructural isotropic (TRISO) particle fuel. The refractory TRISO particle coating system and the dispersion in graphite matrix enhance safeguards (nuclear proliferation resistance) and security. Compared to the conventional high-temperature reactor (HTR) cooled by helium gas, the liquid salt system features significantly lower pressure, larger volumetric heat capacity, and higher thermal conductivity. The salt coolant enables coupling to a nuclear air-Brayton combined cycle (NACC) that provides base-load and peak-power capabilities. Added peak power is produced using jet fuel or locally produced hydrogen. The FHR is, therefore, considered as an ideal candidate for the transportable reactor concept to provide power to remote sites. In this context, a 20-MW (thermal power) compact core aiming at an 18-month once-through fuel cycle is currently under design at Massachusetts Institute of Technology (MIT). One of the key challenges of the core design is to minimize the reactivity swing induced by fuel depletion, since excessive reactivity will increase the complexity in control rod design and also result in criticality risk during the transportation process. In this study, burnable poison particles (BPPs) made of B_4C with natural boron (i.e., 20% ~(10)B content) are adopted as the key measure for fuel cycle optimization. It was found that the overall inventory and the individual size of BPPs are the two most important parameters that determine the evolution path of the multiplication factor over time. The packing fraction (PF) in the fuel compact and the height of active zone are of secondary importance. The neutronic effect of ~(6)Li depletion was also quantified. The 18-month once-through fuel cycle is optimized, and the depletion reactivity swing is reduced to 1 beta. The reactivity control system, which consists of six control rods and 12 safety rods, has been implemented in the proposed FHR core configuration. It fully satisfies the design goal of limiting the maximum reactivity worth for single control rod ejection within 0.8 beta and ensuring shutdown margin with the most valuable safety rod fully withdrawn. The core power distribution including the control rod's effect is also demonstrated in this paper.
机译:氟化物盐冷却高温反应堆(FHR)是一种新的反应堆概念,它结合了低压液态盐冷却剂和高温三结构各向同性(TRISO)颗粒燃料。耐火TRISO颗粒涂层系统和在石墨基质中的分散体增强了安全性(抗核扩散性)和安全性。与传统的用氦气冷却的高温反应器(HTR)相比,液盐系统的压力明显更低,体积热容更大,热导率更高。盐冷却剂能够耦合至核空气-布雷顿联合循环(NACC),该循环提供基本负载和峰值功率功能。使用喷气燃料或本地产生的氢气会产生增加的峰值功率。因此,FHR被认为是可运输反应堆概念向偏远地区供电的理想候选者。在这种情况下,麻省理工学院(MIT)目前正在设计一种20兆瓦(热电)紧凑型堆芯,旨在实现18个月的一次性燃料循环。堆芯设计的关键挑战之一是最大程度地减少燃料消耗引起的反应性波动,因为过度的反应性会增加控制杆设计的复杂性,并在运输过程中导致严重风险。在这项研究中,采用B_4C与天然硼(即20%〜(10)B含量)制成的可燃毒物颗粒(BPP)被用作优化燃料循环的关键措施。发现总的存量和BPP的个体大小是确定乘积因子随时间的演变路径的两个最重要的参数。燃料块中的填充分数(PF)和有效区域的高度至关重要。 〜(6)Li耗尽的中子效应也被量化。优化了18个月的一次性燃料循环,并将耗竭反应性波动降低至1 beta。在建议的FHR核心配置中已实现了由6个控制棒和12个安全棒组成的反应性控制系统。它完全满足了以下设计目标:将单个控制棒弹出的最大反应值限制在0.8 beta以内,并确保在最有价值的安全棒完全撤回的情况下确保关闭裕度。本文还演示了包括控制杆效应在内的核心功率分布。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号