...
首页> 外文期刊>Journal of molecular modeling >Mechanistic insight into effect of doping of Ni on CO2 reduction on the (111) facet of Cu: thermodynamic and kinetic analyses of the elementary steps
【24h】

Mechanistic insight into effect of doping of Ni on CO2 reduction on the (111) facet of Cu: thermodynamic and kinetic analyses of the elementary steps

机译:深入了解Ni掺杂对Cu(111)晶面上CO2还原的影响:基本步骤的热力学和动力学分析

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

A systematic mechanistic investigation of CO2 reduction on a Ni-modified Cu(111) surface is performed based on an extensive set of density functional theory (DFT) calculations by focusing on the hydrocarbon CH4 formation pathways. By carefully analyzing reduction pathways on the Ni-modified Cu(111) surface, some important mechanistic information is deduced. The presence of Ni stabilizes all reaction intermediates, and thus reduces the activation barrier for almost all CO2 reduction steps. Most importantly, it can considerably lower than the activation barrier of CO2 hydrogenative dissociation into CO, which is the rate-determining step of CO2 reduction on a pure Cu(111) surface. Thus, the doping of Ni atom is able to activate CO2, leading to enhanced surface activity of CO2 reduction into hydrocarbons. Notably, the activation barriers that are required for CH4 and CH3OH formation are almost all easily overcome through the thermoactive process at ambient temperatures after doping of Ni atom. Thus, a higher CH4 and CH3OH yield may be expected in the presence of the doped Ni atom. Thermodynamic analyses indicate that doping of Ni may reduce the overpotential of CO formation through CO2 hydrogenative dissociation. On this basis, two decriptors may be proposed in order to describe the catalytic activity of Cu-based catalysts for CO2 reduction, and a perfect Cu-based alloy in CO2 reduction should moderately bind CO and form and reduce CO more easily. Simutaneously, CO hydrogenation occurs more easily on the (111) facet of Ni-modified Cu than dimerization, thereby the selectivity of (111) facet of Cu on production CH4 is further confirmed to some degree. The present study reveals a rich reaction chemistry and provides new insights to guide the rational design of Cu-based alloy catalysts for hydrocarbons formation from CO2 reduction.
机译:基于大量的密度泛函理论(DFT)计算,重点关注烃CH4的形成途径,对Ni修饰的Cu(111)表面上的CO2还原进行了系统的机械研究。通过仔细分析镍改性的Cu(111)表面上的还原途径,推论出一些重要的机理信息。 Ni的存在使所有反应中间体稳定,因此降低了几乎所有CO 2还原步骤的活化势垒。最重要的是,它可以大大低于CO2加氢离解成CO的活化势垒,这是在纯Cu(111)表面上还原CO2的速率决定步骤。因此,Ni原子的掺杂能够活化CO 2,导致增强的CO 2还原成烃的表面活性。值得注意的是,CH 4和CH 3 OH形成所需的活化势垒几乎可以通过在掺杂Ni原子后在环境温度下通过热活化过程轻松克服。因此,在掺杂的Ni原子的存在下,可以预期更高的CH 4和CH 3 OH产率。热力学分析表明,Ni的掺杂可以减少通过CO2氢化离解而形成CO的过电位。在此基础上,可以提出两个解吸器,以描述铜基催化剂对CO2还原的催化活性,而理想的铜基合金在CO2还原中应适度键合CO,并更易于形成和还原CO。同时,在Ni-改性的Cu的(111)面上比二聚化更容易发生CO加氢,从而在一定程度上进一步证实了Cu在生产CH4上的(111)面的选择性。本研究揭示了丰富的反应化学性质,并提供了新的见识,以指导合理设计铜基合金催化剂用于二氧化碳还原形成碳氢化合物。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号