首页> 外文期刊>Journal of molecular modeling >Controlling the aggregation and rate of release in order to improve insulin formulation: molecular dynamics study of full-length insulin amyloid oligomer models
【24h】

Controlling the aggregation and rate of release in order to improve insulin formulation: molecular dynamics study of full-length insulin amyloid oligomer models

机译:控制聚集和释放速率以改善胰岛素配方:全长胰岛素淀粉样蛋白低聚物模型的分子动力学研究

获取原文
获取原文并翻译 | 示例
           

摘要

Insulin is a hormone that regulates the physiological glucose level in human blood. Insulin injections are used to treat diabetic patients. The amyloid aggregation of insulin may cause problems during the production, storage, and delivery of insulin formulations. Several modifications to the C-terminus of the B chain have been suggested in order to improve the insulin formulation. The central fragments of the A and B chains (LYQLENY and LVEALYL) have recently been identified as β-sheet-forming regions, and their microcrystalline structures have been used to build a high-resolution amyloid fibril model of insulin. Here we report on a molecular dynamics (MD) study of single-layer oligomers of the full-length insulin which aimed to identify the structural elements that are important for amyloid stability, and to suggest single glycine mutants in the β-sheet region that may improve the formulation. Structural stability, aggregation behavior and the thermodynamics of association were studied for the wild-type and mutant aggregates. A comparison of the oligomers of different sizes revealed that adding strands enhances the internal stability of the wild-type aggregates. We call this "dynamic cooperativity". The secondary structure content and clustering analysis of the MD trajectories show that the largest aggregates retain the fibril conformation, while the monomers and dimers lose their conformations. The degree of structural similarity between the oligomers in the simulation and the fibril conformation is proposed as a possible explanation for the experimentally observed shortening of the nucleation lag phase of insulin with oligomer seeding. Decomposing the free energy into electrostatic, van der Waals and solvation components demonstrated that electrostatic interactions contribute unfavorably to the binding, while the van der Waals and especially solvation effects are favorable for it. A per-atom decomposition allowed us to identify the residues that contribute most to the binding free energy. Residues in the β-sheet regions of chains A and B were found to be the key residues as they provided the largest favorable contributions to single-layer association. The positive ∆∆ G _(mut) values of 37.3 to 1.4 kcal mol ~(?1) of the mutants in the β-sheet region indicate that they have a lower tendency to aggregate than the wild type. The information obtained by identifying the parts of insulin molecules that are crucial to aggregate formation and stability can be used to design new analogs that can better control the blood glucose level. The results of our simulation may help in the rational design of new insulin analogs with a decreased propensity for self-association, thus avoiding injection amyloidosis. They may also be used to design new fast-acting and delayed-release insulin formulations. Figure Molecular dynamic study of the full length insulin amyloid oligomers identified structural elements important for their stability. Comparison of the aggregates of different size revealed that addition of strands enhances the internal stability of the oligomers. Per-atom decomposition of the binding free energy allowed us to identify the residues contributing most to the binding free energy. We found the residues in the β-sheet regions of chain A and chain B to be the key residues for the single layer association. The result from our simulation could help in the rational design of the new insulin analogues with the decreased propensity for self-association avoiding injection amyloidosis. It can also be used to design new fast acting and delayed release insulin formulations.
机译:胰岛素是一种调节人体血液中生理葡萄糖水平的激素。胰岛素注射剂用于治疗糖尿病患者。胰岛素的淀粉样蛋白聚集可能在胰岛素制剂的生产,储存和递送过程中引起问题。已经提出了对B链的C端的一些修饰,以改善胰岛素的配方。 A和B链的中央片段(LYQLENY和LVEALYL)最近被鉴定为形成β-折叠的区域,其微晶结构已被用于构建胰岛素的高分辨率淀粉样蛋白原纤维模型。在这里,我们报告了全长胰岛素的单层低聚物的分子动力学(MD)研究,该研究旨在确定对淀粉样蛋白稳定性至关重要的结构元素,并建议在β-折叠区域中存在单个甘氨酸突变体改善配方。研究了野生型和突变型聚集体的结构稳定性,聚集行为和缔合的热力学。不同大小的寡聚物的比较显示,添加链增强了野生型聚集体的内部稳定性。我们称其为“动态合作性”。 MD轨迹的二级结构含量和聚类分析表明,最大的聚集体保留了原纤维构象,而单体和二聚体失去了其构象。提出了模拟中的低聚物和原纤维构象之间的结构相似程度,可以作为实验观察到的低聚物注入缩短胰岛素成核滞后阶段的可能解释。将自由能分解为静电,范德华力和溶剂化组分表明,静电相互作用不利地促进了结合,而范德华力尤其是溶剂化作用对此有利。每个原子的分解使我们能够鉴定出对结合自由能贡献最大的残基。发现链A和B的β-折叠区域中的残基是关键残基,因为它们为单层缔合提供了最大的有利贡献。 β-折叠区域中突变体的正Δ∆ G _(mut)值为37.3至1.4 kcal mol〜(?1),表明它们的聚集趋势低于野生型。通过鉴定对聚集物形成和稳定性至关重要的胰岛素分子部分而获得的信息可用于设计可以更好地控制血糖水平的新类似物。我们的模拟结果可能有助于合理设计新的胰岛素类似物,降低其自我缔合的倾向,从而避免注射淀粉样变性。它们还可用于设计新的速效和延迟释放胰岛素制剂。全长胰岛素淀粉样蛋白低聚物的分子动力学研究确定了对其稳定性重要的结构元素。不同大小的聚集体的比较表明,链的添加增强了寡聚物的内部稳定性。结合自由能的每原子分解使我们能够鉴定对结合自由能贡献最大的残基。我们发现链A和链B的β-折叠区域中的残基是单层缔合的关键残基。我们的模拟结果可以帮助新胰岛素类似物的合理设计,降低其自我缔合的趋势,避免注射淀粉样变性。它也可以用于设计新的速效和延迟释放胰岛素制剂。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号