...
首页> 外文期刊>Journal of Neuroscience Methods >Skull-stripping with machine learning deformable organisms
【24h】

Skull-stripping with machine learning deformable organisms

机译:借助机器学习可变形生物进行颅骨剥离

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Background: Segmentation methods for medical images may not generalize well to new data sets or new tasks, hampering their utility. We attempt to remedy these issues using deformable organisms to create an easily customizable segmentation plan. We validate our framework by creating a plan to locate the brain in 3D magnetic resonance images of the head (skull-stripping).New method: Our method borrows ideas from artificial life to govern a set of deformable models. We use control processes such as sensing, proactive planning, reactive behavior, and knowledge representation to segment an image. The image may have landmarks and features specific to that dataset; these may be easily incorporated into the plan. In addition, we use a machine learning method to make our segmentation more accurate.Results: Our method had the least Hausdorff distance error, but included slightly less brain voxels (false negatives). It also had the lowest false positive error and performed on par to skull-stripping specific method on other metrics.Comparison with existing method(s): We tested our method on 838 Tl -weighted images, evaluating results using distance and overlap error metrics based on expert gold standard segmentations. We evaluated the results before and after the learning step to quantify its benefit; we also compare our results to three other widely used methods: BSE, BET, and the Hybrid Watershed algorithm.Conclusions: Our framework captures diverse categories of information needed for brain segmentation and will provide a foundation for tackling a wealth of segmentation problems.
机译:背景:医学图像的分割方法可能无法很好地推广到新数据集或新任务,从而影响了其实用性。我们尝试使用可变形的生物体来创建可轻松自定义的细分计划来解决这些问题。我们通过创建一个计划在头的3D磁共振图像(颅骨剥离)中定位大脑来验证我们的框架。新方法:我们的方法借鉴了人工生命的思想来控制一组可变形模型。我们使用诸如感应,主动计划,反应性行为和知识表示之类的控制过程来分割图像。图像可能具有特定于该数据集的界标和特征;这些可以很容易地纳入计划中。此外,我们使用机器学习方法来使分割更加准确。结果:我们的方法的Hausdorff距离误差最小,但大脑体素(假阴性)略少。它也具有最低的假阳性误差,并且与其他度量标准上的头骨剥离特定方法相当。与现有方法进行比较:我们在838 T1加权图像上测试了该方法,并使用基于距离和重叠误差的度量来评估结果关于专家黄金标准细分。我们在学习步骤前后评估了结果,以量化其收益。我们还将我们的结果与其他三种广泛使用的方法进行了比较:BSE,BET和Hybrid Watershed算法。结论:我们的框架捕获了大脑分割所需的各种信息,并将为解决众多分割问题提供基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号