首页> 外文期刊>Journal of Neurophysiology >Effect of neuritic cables on conductance estimates for remote electrical synapses.
【24h】

Effect of neuritic cables on conductance estimates for remote electrical synapses.

机译:神经电缆对远程电突触电导估计的影响。

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The conductance of electrical synapses is usually estimated from voltage recordings at the neuronal somata under the assumption that each cell is isopotential. This approach neglects effects of intervening neurites. For a cell pair with unbranched neurites and an electrical synapse at their ends, we used cable theory to derive an analytical expression that relates the synaptic conductance to voltage recordings at the cell bodies and to the neurite properties. The equation implies that the conventional method significantly underestimates the actual synapse conductance if the neurite length is comparable to the electrotonic length constant and if the synaptic conductance is similar to the serial neurite conductance. For an experimental test, we cultured pairs of snail neurons on protein patterns, resulting in a geometry that matched the theoretical model. Using the isopotential theory, we estimated the synapse conductances and found them to be rather weak. To obtain the cable properties, we recorded spatiotemporal maps of signal propagation in the neurites using a voltage-sensitive dye. Fits of these maps to a passive cable model showed that the snail neurons are electrotonically rather compact. Given these features of our experimental system, the synaptic conductances derived with the nonisopotential model deviated from the estimates of the isopotential theory by about 13%. This discrepancy, although small, shows that even in electrotonically compact neurons coupled by weak synapses the impact of the neuritic cables on conductance estimates cannot be neglected. When applied to less compact and more strongly coupled cell pairs in vivo, our approach can supply the realistic estimates of synaptic conductances that are necessary for a better understanding of the role of electrical coupling in neural systems.
机译:通常在每个细胞都是等电位的假设下,通过神经细胞体上的电压记录来估计电突触的电导。这种方法忽略了中间神经突的影响。对于在末端具有无分支神经突和电突触的细胞对,我们使用电缆理论推导了一种解析表达式,其将突触电导与细胞体上的电压记录以及神经突性质相关。该方程式暗示,如果神经突长度与电声长度常数相当,并且如果突触电导类似于串联神经突电导,则常规方法会大大低估实际的突触电导。为了进行实验测试,我们在蛋白质模式下培养了成对的蜗牛神经元,从而形成了与理论模型匹配的几何形状。使用等电位理论,我们估计了突触电导,发现它们相当弱。为了获得电缆的性能,我们使用压敏染料记录了神经突中信号传播的时空图。这些图与无源电缆模型的拟合表明,蜗牛神经元在电子学上相当紧凑。考虑到我们实验系统的这些特征,用非等电位模型得出的突触电导与等电位理论的估计值相差约13%。这种差异虽然很小,但表明即使在由弱突触耦合的电致密神经元中,神经电缆对电导率估计值的影响也不能忽略。当应用于体内的紧凑性和耦合性更强的细胞对时,我们的方法可以提供突触电导的现实估计,这对于更好地了解电耦合在神经系统中的作用是必需的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号