...
首页> 外文期刊>Journal of Neurophysiology >Ionic mechanism of electroresponsiveness in cerebellar granule cells implicates the action of a persistent sodium current.
【24h】

Ionic mechanism of electroresponsiveness in cerebellar granule cells implicates the action of a persistent sodium current.

机译:小脑颗粒细胞中电响应的离子机制牵涉持续钠电流的作用。

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Although substantial knowledge has been accumulated on cerebellar granule cell voltage-dependent currents, their role in regulating electroresponsiveness has remained speculative. In this paper, we have used patch-clamp recording techniques in acute slice preparations to investigate the ionic basis of electroresponsiveness of rat cerebellar granule cells at a mature developmental stage. The granule cell generated a Na+-dependent spike discharge resistant to voltage and time inactivation, showing a linear frequency increase with injected currents. Action potentials arose when subthreshold depolarizing potentials, which were driven by a persistent Na+ current, reached a critical threshold. The stability and linearity of the repetitive discharge was based on a complex mechanism involving a N-type Ca2+ current blocked by omega-CTx GVIA, and a Ca2+-dependent K+ current blocked by charibdotoxin and low tetraethylammonium (TEA; <1 mM); a voltage-dependent Ca2+-independent K+ current blocked by high TEA (>1 mM); and an A current blocked by 2 mM 4-aminopyridine. Weakening TEA-sensitive K+ currents switched the granule cell into a bursting mode sustained by the persistent Na+ current. A dynamic model is proposed in which the Na+ current-dependent action potential causes secondary Ca2+ current activation and feedback voltage- and Ca2+-dependent afterhyperpolarization. The afterhyperpolarization reprimes the channels inactivated in the spike, preventing adaptation and bursting and controlling the duration of the interspike interval and firing frequency. This result reveals complex dynamics behind repetitive spike discharge and suggests that a persistent Na+ current plays an important role in action potential initiation and in the regulation of mossy fiber-granule cells transmission.
机译:尽管积累了关于小脑颗粒细胞电压依赖性电流的大量知识,但它们在调节电反应性中的作用仍是推测性的。在本文中,我们已在急性切片制剂中使用膜片钳记录技术来研究大鼠小脑颗粒细胞在成熟发育阶段的电反应性的离子基础。颗粒电池产生耐电压和时间失活的Na +依赖性尖峰放电,显示出随着注入电流的线性频率增加。当由持续的Na +电流驱动的亚阈值去极化电位达到临界阈值时,就会产生动作电位。重复放电的稳定性和线性是基于一个复杂的机制,该机制涉及一个被omega-CTx GVIA阻断的N型Ca2 +电流,以及一个被甲毒素和低四乙铵(TEA; <1 mM)阻断的依赖Ca2 +的K +电流。高TEA(> 1 mM)阻止了电压依赖性Ca2 +依赖性K +电流;和A电流被2 mM 4-氨基吡啶阻断。对TEA敏感的K +电流减弱会导致颗粒细胞进入持续Na +电流持续的爆发模式。提出了一个动力学模型,其中Na +电流相关的动作电位引起次级Ca 2+电流激活以及反馈电压和Ca 2+依赖性后超极化。超极化后会重新启动在尖峰中未激活的通道,从而阻止自适应和突发,并控制尖峰间隔和触发频率的持续时间。该结果揭示了重复性尖峰放电背后的复杂动力学,并表明持续的Na +电流在动作电位的启动和苔藓纤维-颗粒细胞传输的调节中起着重要作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号