首页> 外文期刊>Journal of Neurophysiology >Polarized Skylight Navigation in Insects: Model and Electrophysiology of e-Vector Coding by Neurons in the Central Complex.
【24h】

Polarized Skylight Navigation in Insects: Model and Electrophysiology of e-Vector Coding by Neurons in the Central Complex.

机译:昆虫中的极化天窗导航:中央复合体中神经元进行e-Vector编码的模型和电生理。

获取原文
获取原文并翻译 | 示例
           

摘要

Many insects exploit skylight polarization for visual compass orientation or course control. As found in crickets, the peripheral visual system (optic lobe) contains three types of polarization-sensitive neurons (POL neurons), which are tuned to different ( approximately 60 degrees diverging) e-vector orientations. Thus each e-vector orientation elicits a specific combination of activities among the POL neurons coding any e-vector orientation by just three neural signals. In this study, we hypothesize that in the presumed orientation center of the brain (central complex) e-vector orientation is population-coded by a set of "compass neurons." Using computer modeling, we present a neural network model transforming the signal triplet provided by the POL neurons to compass neuron activities coding e-vector orientation by a population code. Using intracellular electrophysiology and cell marking, we present evidence that neurons with the response profile of the presumed compass neurons do indeed exist in theinsect brain: each of these compass neuron-like (CNL) cells is activated by a specific e-vector orientation only and otherwise remains silent. Morphologically, CNL cells are tangential neurons extending from the lateral accessory lobe to the lower division of the central body. Surpassing the modeled compass neurons in performance, CNL cells are insensitive to the degree of polarization of the stimulus between 99% and at least down to 18% polarization and thus largely disregard variations of skylight polarization due to changing solar elevations or atmospheric conditions. This suggests that the polarization vision system includes a gain control circuit keeping the output activity at a constant level.
机译:许多昆虫利用天窗偏振来进行视觉罗盘定向或航向控制。正如在中发现的那样,外围视觉系统(视神经叶)包含三种类型的极化敏感神经元(POL神经元),它们被调整为不同的(大约60度相异)电子矢量方向。因此,每个电子载体方向仅通过三个神经信号在编码任何电子载体方向的POL神经元之间引发活动的特定组合。在这项研究中,我们假设在假定的大脑定向中心(中央复合体)中,e-vector定向由一组“罗盘神经元”进行人口编码。使用计算机建模,我们提出了一个神经网络模型,该模型将POL神经元提供的信号三态转换为罗盘神经元活动,并通过种群代码对e-矢量方向进行编码。使用细胞内电生理学和细胞标记,我们提供证据证明在昆虫的脑中确实存在具有假定的罗盘神经元响应特征的神经元:这些罗盘神经元状(CNL)细胞中的每一个仅通过特定的e-vector方向被激活,并且否则保持沉默。从形态上讲,CNL细胞是从外侧副叶延伸到中央体下部的切向神经元。在性能上超过建模的指南针神经元,CNL细胞对99%到至少18%极化之间的刺激极化程度不敏感,因此很大程度上忽略了由于太阳高度或大气条件变化而引起的天窗极化变化。这表明偏振视觉系统包括将输出活动保持在恒定水平的增益控制电路。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号