首页> 外文期刊>Journal of Microscopy >Multi-dimensional time-correlated single photon counting (TCSPC) fluorescence lifetime imaging microscopy (FLIM) to detect FRET in cells.
【24h】

Multi-dimensional time-correlated single photon counting (TCSPC) fluorescence lifetime imaging microscopy (FLIM) to detect FRET in cells.

机译:多维时间相关单光子计数(TCSPC)荧光寿命成像显微镜(FLIM),用于检测细胞中的FRET。

获取原文
获取原文并翻译 | 示例
           

摘要

We present a novel, multi-dimensional, time-correlated single photon counting (TCSPC) technique to perform fluorescence lifetime imaging with a laser-scanning microscope operated at a pixel dwell-time in the microsecond range. The unsurpassed temporal accuracy of this approach combined with a high detection efficiency was applied to measure the fluorescent lifetimes of enhanced cyan fluorescent protein (ECFP) in isolation and in tandem with EYFP (enhanced yellow fluorescent protein). This technique enables multi-exponential decay analysis in a scanning microscope with high intrinsic time resolution, accuracy and counting efficiency, particularly at the low excitation levels required to maintain cell viability and avoid photobleaching. Using a construct encoding the two fluorescent proteins separated by a fixed-distance amino acid spacer, we were able to measure the fluorescence resonance energy transfer (FRET) efficiency determined by the interchromophore distance. These data revealed that ECFP exhibits complex exponential fluorescence decays under both FRET and non-FRET conditions, as previously reported. Two approaches to calculate the distance between donor and acceptor from the lifetime delivered values within a 10% error range. To confirm that this method can be used also to quantify intermolecular FRET, we labelled cultured neurones with the styryl dye FM1-43, quantified the fluorescence lifetime, then quenched its fluorescence using FM4-64, an efficient energy acceptor for FM1-43 emission. These experiments confirmed directly for the first time that FRET occurs between these two chromophores, characterized the lifetimes of these probes, determined the interchromophore distance in the plasma membrane and provided high-resolution two-dimensional images of lifetime distributions in living neurones.
机译:我们提出了一种新颖的,多维的,时间相关的单光子计数(TCSPC)技术,以在微秒范围内的像素停留时间下运行的激光扫描显微镜执行荧光寿命成像。该方法无与伦比的时间准确性与高检测效率相结合,可单独或与EYFP(增强型黄色荧光蛋白)一起用于测量增强型青色荧光蛋白(ECFP)的荧光寿命。这项技术可以在扫描显微镜中进行多指数衰减分析,具有很高的固有时间分辨率,准确性和计数效率,尤其是在维持细胞活力和避免光漂白所需的低激发水平下。使用编码由固定距离氨基酸间隔区分开的两个荧光蛋白的构建体,我们能够测量由发色团距离确定的荧光共振能量转移(FRET)效率。这些数据表明,如先前报道,ECFP在FRET和非FRET条件下均表现出复杂的指数荧光衰减。有两种方法可以根据寿命交付值在10%的误差范围内计算供体和受体之间的距离。为确认该方法也可用于定量分子间FRET,我们用苯乙烯基染料FM1-43标记了培养的神经元,量化了荧光寿命,然后使用FM4-64(FM1-43发射的有效能量受体)淬灭了其荧光。这些实验首次直接证实了这两个生色团之间发生了FRET,表征了这些探针的寿命,确定了质膜之间的生色团间距离,并提供了生命神经元中寿命分布的高分辨率二维图像。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号