...
首页> 外文期刊>Journal of natural gas science and engineering >Steam reforming of methane and methanol in simulated macro & micro-scale membrane reactors: Selective separation of hydrogen for optimum conversion
【24h】

Steam reforming of methane and methanol in simulated macro & micro-scale membrane reactors: Selective separation of hydrogen for optimum conversion

机译:在模拟的大型和微型膜反应器中对甲烷和甲醇进行蒸汽重整:选择性分离氢气以实现最佳转化

获取原文
获取原文并翻译 | 示例
           

摘要

Various configurations of membrane reactor for steam reforming of methane and methanol are studied here using mathematical model. Micro-scale membrane reactor is conceptualized as a channel with one wall coated with catalyst material, and the other wall permeating hydrogen through a layer of palladium. The membrane layer helps in removal of hydrogen from the reaction site, thereby shifting the equilibrium conversion. In comparison with macro-scale model, the membrane micro-reactor required a shorter residence time to achieve the same level of conversion. This is primarily because of better removal of hydrogen, and is true even when the dispersed catalyst density remained same in both macro and micro models. Any perturbation in the rate constants of sub-reactions that could be arising from catalyst site rearrangements in the micro-fabricated layer does not significantly affect the conversion. Effects of the thickness of the membrane and operating temperature on the conversion are discussed. The pressure drop along the length of the channel arising from friction, reaction stoichiometry, and permeation of product component was estimated. The ratio of membrane area to the catalytic surface area in the channel as a function of distance from the inlet end should be such that the conversion is maximized. This is observed that with selective placement of membrane and catalyst, a methane conversion of more than 95% can be achieved by considering only 40% of the wall, covered with membrane.
机译:本文使用数学模型研究了用于甲烷和甲醇蒸汽重整的膜反应器的各种配置。微型膜反应器的概念是一个通道,其中一壁涂有催化剂材料,另一壁则通过钯层渗透氢。膜层有助于从反应部位除去氢,从而改变平衡转化率。与宏观模型相比,膜微反应器需要更短的停留时间才能达到相同的转化水平。这主要是由于更好地去除了氢,即使在宏观模型和微观模型中,即使分散的催化剂密度保持相同,也是如此。在微加工层中催化剂位点重排可能引起的副反应速率常数的任何扰动均不会显着影响转化率。讨论了膜厚度和操作温度对转化率的影响。估计了由于摩擦,反应化学计量和产物组分渗透而引起的沿通道长度的压降。通道中膜面积与催化表面积的比值应与距入口端的距离成函数关系,以使转化率最大化。观察到,通过选择性地放置膜和催化剂,仅考虑覆盖膜的壁的40%,即可实现超过95%的甲烷转化率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号