...
首页> 外文期刊>Journal of natural gas science and engineering >Seismic correlated Mallik 3D gas hydrate distribution: Effect of geomechanics in non-homogeneous hydrate dissociation by depressurization
【24h】

Seismic correlated Mallik 3D gas hydrate distribution: Effect of geomechanics in non-homogeneous hydrate dissociation by depressurization

机译:地震相关的Mallik 3D天然气水合物分布:地质力学在非均匀水合物减压降解中的作用

获取原文
获取原文并翻译 | 示例
           

摘要

The delineation of the Mallik gas hydrate field has utilized extensive well logging and substantial 3D seismic testing and interpretation. This study explores the use of seismic data to quantify the areally heterogeneous gas hydrate distribution. The available Mallik 3D seismic data was compiled and compared/contrasted with available well log data from two adjacent wells. Based on the seismic information, two areally variable (i.e. non-homogeneous) scenarios for gas hydrate distributions are considered: Scenario I having the same initial total hydrate amount as our earlier model areally uniform (homogeneous) distribution, and Scenario II with significantly less overall total hydrate, but honouring the same relative distribution. The scenarios of variable gas hydrate distributions are used in dynamic simulations of the lower Mallik zone. Simulations of each were conducted with and without the role of geomechanics. In Scenario I, we observed multiple gas production peaks (which quite similar to 6 days production behaviour) with higher localized pressure pulses occurred due to strong gas hydrate heterogeneity. In Scenario II, this drastic change in gas production rate was not observed (due to faster pressure evolution in the reservoir). In both Scenarios, the overall reservoir gas production peak is delayed compared to the homogeneous case. This is further delayed by the role of geomechanics. More interestingly, all simulation cases show a very similar overall production trend. This is probably a unique for the Mallik gas hydrate production using single vertical well, including a gas production peak but terminating in a stabilized period of lower but significant gas production. With geomechanics, gas production in general and the gas production peak is shifted and delayed. The geomechanics effect is not purely compaction drive (as in conventional reservoirs, gas production increases with geomechanics). The simulations utilized two set of geomechanical parameters obtained from logs (dynamic parameters) and rocks testing (static parameters). Geomechanical responses based on dynamic parameters were essentially equivalent to simulations ignoring geomechanical effects. The geomechanics simulations indicate an essentially elastic reservoir response (i.e. no plastic failure) assuming a cased vertical well. The Mallik upper zone A and middle zone B are closer to the permafrost and nearer to plasticity limits should be explored.
机译:Mallik天然气水合物气田的划分利用了广泛的测井以及大量的3D地震测试和解释。这项研究探索了使用地震数据来量化面状非均质天然气水合物的分布。编译可用的Mallik 3D地震数据,并将其与来自两个相邻井的可用测井数据进行比较/对比。根据地震信息,考虑了两种天然气水合物分布的区域变量(即非均质)场景:方案I的初始总水合物量与我们早期模型的初始水合物总量相同(均质),方案II的总体水合物分布明显较少总水合物,但相对分布相同。在下Mallik区域的动态模拟中使用了可变天然气水合物分布的场景。在有或没有地质力学作用的情况下都进行了模拟。在方案I中,我们观察到多个天然气生产峰(这与6天的生产行为十分相似),并且由于强烈的天然气水合物非均质性而出现了较高的局部压力脉冲。在方案II中,未观察到这种天然气生产率的剧烈变化(由于储层中压力的快速释放)。与同质情况相比,在这两种情况下,总的储层气产量峰值都被延迟。地质力学的作用进一步延迟了这一点。更有趣的是,所有模拟案例都显示出非常相似的总体生产趋势。对于使用单个垂直井的Mallik天然气水合物生产来说,这可能是唯一的,包括天然气产量达到峰值,但在较低但重要的天然气产量稳定下来后终止。在地质力学的作用下,总体上天然气产量和天然气产量峰值都发生了偏移和延迟。地质力学的作用并非纯粹是压实作用(如在常规储层中,天然气随地质力学而增加)。模拟利用了从测井(动态参数)和岩石测试(静态参数)获得的两组地质力学参数。基于动态参数的地质力学响应基本上等同于忽略地质力学效应的模拟。地质力学模拟表明,假设有套管垂直井,则储层反应基本是弹性的(即无塑性破坏)。 Mallik的上部区域A和中部区域B更靠近永久冻土,并且应接近可塑性极限。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号