首页> 外文期刊>Journal of natural gas science and engineering >A coupled extended finite element approach for modeling hydraulic fracturing in consideration of proppant
【24h】

A coupled extended finite element approach for modeling hydraulic fracturing in consideration of proppant

机译:考虑支撑剂的水力压裂耦合扩展有限元方法

获取原文
获取原文并翻译 | 示例
           

摘要

Due to its influence on the stress field around the propped fractures in horizontal well and the final conductivity of the created fracture network, the transport and packing of proppant plays a significant role in hydraulic fracturing. Therefore, it is important to describe the distribution of proppant in fractures and to accurately model the propped fractures. To this aim, a two-dimensional fully coupled model based on the extended finite element method (XFEM) is established, which takes into account some crucial physical processes, including rock deformation, fracturing fluid flow, fracturing fluid leak-off, propagation of fractures, proppant transport and proppant packing. The fluid-solid coupling equations are solved by the Newton-Raphson method and the proppant transport is evaluated by the upwind scheme. The hexagonal close packing of proppant is used to calculate the width of propped fracture. By taking advantage of the characteristic features of XFEM, an efficient strategy to model the propped fracture is proposed by directly enforcing the displacement boundary conditions on relevant enriched degrees of freedom without adding additional elements. The proposed coupled approach is validated by comparison with existing literature. The results of the sequential fracturing show that the propagation path of the subsequently created fracture is strongly affected by the boundary conditions (i.e., sliding contact, filled with constant pressure fluid, or propped open by proppant) imposed on the previously propped fracture, and the proposed XFEM-based strategy to model the propped fracture is an accurate and efficient alternative. Further sensitivity analysis reveals that the fracture spacing and the proppant concentration of the injected slurry also have significant influence on propagation path of the subsequently created fracture. The advantages of XFEM make the proposed coupled approach an attractive tool for the design of hydraulic fracturing. (C) 2016 Elsevier B.V. All rights reserved.
机译:由于其对水平井中支撑裂缝周围的应力场以及所形成裂缝网络的最终电导率的影响,支撑剂的运输和堆积在水力压裂中起着重要作用。因此,重要的是描述裂缝中支撑剂的分布并准确地模拟支撑的裂缝。为此,建立了基于扩展有限元方法(XFEM)的二维全耦合模型,该模型考虑了一些关键的物理过程,包括岩石变形,压裂液流动,压裂液泄漏,裂缝扩展等。 ,支撑剂运输和支撑剂包装。通过牛顿-拉夫森法求解流固耦合方程,并通过迎风方案评估支撑剂的运移。支撑剂六角密堆积用于计算支撑裂缝的宽度。利用XFEM的特征,提出了一种有效的策略来对支撑的裂缝进行建模,方法是直接在相关的丰富自由度上执行位移边界条件,而无需添加其他元素。通过与现有文献进行比较,对所提出的耦合方法进行了验证。顺序压裂的结果表明,随后产生的裂缝的传播路径受到施加在先前支撑裂缝上的边界条件(即滑动接触,充满恒压流体或支撑剂支撑打开)的强烈影响,并且提出的基于XFEM的支撑骨折建模策略是一种准确而有效的替代方法。进一步的敏感性分析表明,注入的浆液的裂缝间距和支撑剂浓度对随后产生的裂缝的传播路径也有重大影响。 XFEM的优点使所提出的耦合方法成为水力压裂设计的诱人工具。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号