首页> 外文期刊>Journal of Non-Newtonian Fluid Mechanics >Linear viscoelastic models Part IV. From molecular dynamics to temperature and viscoelastic relations using control theory
【24h】

Linear viscoelastic models Part IV. From molecular dynamics to temperature and viscoelastic relations using control theory

机译:线性粘弹性模型第四部分。使用控制理论从分子动力学到温度和粘弹性关系

获取原文
获取原文并翻译 | 示例
           

摘要

Viscoelasticity and temperature dependences are explained using molecular dynamics and control theory. We have previously (Borg and Paakkonen, 2009 [1–3]) applied control theory to model the relationship between the relaxation modulus, dynamic and shear viscosity, transient flow effects, power law and Cox–Merz rule related to the molecular weight distribution (MWD), and here these topics are discussed more generally. In this paper we show the direct simple relation to molecular dynamics using structural models comprising dumb-bells (Bird et al., 1987 [4]) with internal viscosity and elasticity in a statistical tube. The dumb-bell model is used to obtain the linear relation to the elasticity P value of function P(ω) and the relation to the viscosity P value of function P(ω) from chain friction. The applied principle is also valid for the relaxation modulus or shear viscosity. A new principle is presented for obtaining absolute values such as zero viscosity by modelling, which is first used to obtain absolute values for a target point at a high rate for unentangled chains (since close relaxed states of chain topology are much more complicated). An analytical model for the temperature dependency of viscoelastic flows is presented, which is many times more accurate than WLF or Arrhenius equations. Control theory and variations of tube diameter as a function of temperature gives linear relation between chain dynamics and viscoelastic properties. New compact formulas are presented to simultaneously model different polymer flows and temperatures. We have also found that the MWDs computed from the relaxation modulus or complex and the shear viscosity are not temperature sensitive, in contrast to what time–temperature superposition (TTS) suggests, although absolute viscoelastic values make them appear very temperaturedependent. TTS is verified for thermorheologically simple materials, and the reasons for it not holding are explained.
机译:使用分子动力学和控制理论解释了粘弹性和温度依赖性。我们以前(Borg和Paakkonen,2009 [1-3])应用控制理论来建模松弛模量,动态和剪切粘度,瞬变流效应,幂律和与分子量分布相关的Cox-Merz规则之间的关系( MWD),这里将更广泛地讨论这些主题。在本文中,我们使用包含哑铃的结构模型(Bird等,1987 [4])在统计管中显示了与分子动力学的直接简单关系(Bird等,1987 [4])。哑铃模型用于通过链摩擦获得与函数P(ω)的弹性P值的线性关系和与函数P(ω)的粘度P值的线性关系。所应用的原理对于松弛模量或剪切粘度也是有效的。提出了一种通过建模获得绝对值(例如零粘度)的新原理,该原理首先用于以高速率获得非缠结链的目标点的绝对值(因为链拓扑的紧密松弛状态要复杂得多)。提出了一种粘弹性流的温度依赖性分析模型,其精确度比WLF或Arrhenius方程高出许多倍。控制理论和管直径随温度变化的关系给出了链动力学和粘弹性之间的线性关系。提出了新的紧凑公式,可同时模拟不同的聚合物流量和温度。我们还发现,尽管绝对粘弹性值使它们看起来非常依赖于温度,但与时温叠加(TTS)所表明的相比,由驰豫模量或复合物和剪切粘度计算出的MWD对温度不敏感。对TTS进行了热流变简单材料的验证,并解释了不固定的原因。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号