...
首页> 外文期刊>Journal of Non-Crystalline Solids: A Journal Devoted to Oxide, Halide, Chalcogenide and Metallic Glasses, Amorphous Semiconductors, Non-Crystalline Films, Glass-Ceramics and Glassy Composites >A generalized classical nucleation theory for rough interfaces: application in the analysis of homogeneous nucleation in silicate liquids
【24h】

A generalized classical nucleation theory for rough interfaces: application in the analysis of homogeneous nucleation in silicate liquids

机译:粗糙界面的广义经典成核理论:在硅酸盐液体均相成核分析中的应用

获取原文
获取原文并翻译 | 示例
           

摘要

Computer simulations as well as a recent in situ small-angle X-ray scattering study of the nucleation process have shown evidences in favor of the presence of atomic scale surface roughness of the nuclei, especially at low temperatures and/or at early stages of their development. In this article we have introduced a generalized version of the classical theory of homogeneous nucleation in order to incorporate the effect or finite surface roughness of the critical nuclei. The surface roughness has been taken into account by treating the surface of the nuclei as a self-similar fractal with a fractal dimension 3>=d_s>=2. The energetic consequences of the increased surface area due to its fractal character have been shown to be sufficient to explain the long-standing discrepancy between the experimentally observed temperature dependence of homogeneous nucleation rates and corresponding theoretical predictions based on classical theory. This rough-interface theory has been tested against the literature data on homogeneous nucleation of crystals in a number of glass-forming silicate liquids.
机译:计算机模拟以及最近对成核过程进行的小角度X射线原位研究表明,存在核存在原子级表面原子粗糙度的证据,特别是在低温和/或其早期阶段发展。在本文中,我们介绍了经典的均相成核理论的广义形式,以便结合临界核的作用或有限的表面粗糙度。通过将原子核表面视为分形尺寸为3> = d_s> = 2的自相似分形来考虑表面粗糙度。已经表明,由于表面积的分形特征而产生的能量增加的结果足以解释实验观察到的均匀成核速率对温度的依赖性与基于经典理论的相应理论预测之间的长期差异。已针对大量玻璃形成的硅酸盐液体中晶体的均匀成核的文献数据测试了这种粗糙界面理论。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号