...
首页> 外文期刊>Journal of neurotrauma >Mechanical stretch to neurons results in a strain rate and magnitude-dependent increase in plasma membrane permeability.
【24h】

Mechanical stretch to neurons results in a strain rate and magnitude-dependent increase in plasma membrane permeability.

机译:机械拉伸至神经元导致应变率和质膜渗透性的幅度依赖性增加。

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The mechanism by which mechanical impact to brain tissue is transduced to neuronal impairment remains poorly understood. Using an in vitro model of neuronal stretch, we found that mechanical stretch of neurons resulted in a transient plasma membrane permeability increase. Primary cortical neurons, seeded on silicone substrates, were subjected to a defined rate and magnitude strain pulse by stretching the substrates over a fixed cylindrical form. To identify plasma membrane defects, various sized fluorescent molecules were added to the bathing media either immediately before injury or 1, 2, 5, or 10 min after injury and removed one minute later. The percent of cells that took up dye depended on the applied strain rate, strain magnitude and molecular size. Severe stretch (10 sec(-1), 0.30) resulted in significant uptake of all tested molecules (ranging between 0.5 and 8.9 nm radii) with up to 60% of cells positively stained. Furthermore, the neurons remained permeable to the smallest molecule (carboxyfluorescein, 380 Da) up to 5 min after severe stretch but were only permeable to larger molecules (>/=10 kDa) immediately after stretch. These transiently formed membrane defects may be the initiating mechanism that translates mechanical stretch to cellular dysfunction.
机译:对脑组织的机械影响转导为神经元损伤的机制仍知之甚少。使用神经元拉伸的体外模型,我们发现神经元的机械拉伸导致短暂的质膜通透性增加。通过在固定的圆柱体上拉伸基底​​,可将播种在硅树脂基底上的初级皮层神经元置于确定的速率和幅度应变脉冲下。为了鉴定质膜缺陷,在受伤前或受伤后1、2、5或10分钟将各种尺寸的荧光分子添加到沐浴介质中,并在一分钟后将其去除。吸收染料的细胞百分比取决于所施加的应变速率,应变幅度和分子大小。严重拉伸(10秒(-1),0.30)导致所有测试分子(半径在0.5和8.9 nm半径之间)的显着摄取,多达60%的细胞被阳性染色。此外,神经元在剧烈拉伸后直至5分钟内仍对最小分子(羧基荧光素,380 Da)具有渗透性,而在拉伸后立即仅对较大分子(> / = 10 kDa)具有渗透性。这些短暂形成的膜缺损可能是将机械拉伸转变为细胞功能障碍的起始机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号