...
首页> 外文期刊>Journal of neurotrauma >Blast-induced biomechanical loading of the rat: An experimental and anatomically accurate computational blast injury model
【24h】

Blast-induced biomechanical loading of the rat: An experimental and anatomically accurate computational blast injury model

机译:爆炸引起的大鼠生物力学负荷:实验和解剖学上精确的计算爆炸伤害模型

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Blast waves generated by improvised explosive devices (IEDs) cause traumatic brain injury (TBI) in soldiers and civilians. In vivo animal models that use shock tubes are extensively used in laboratories to simulate field conditions, to identify mechanisms of injury, and to develop injury thresholds. In this article, we place rats in different locations along the length of the shock tube (i.e., inside, outside, and near the exit), to examine the role of animal placement location (APL) in the biomechanical load experienced by the animal. We found that the biomechanical load on the brain and internal organs in the thoracic cavity (lungs and heart) varied significantly depending on the APL. When the specimen is positioned outside, organs in the thoracic cavity experience a higher pressure for a longer duration, in contrast to APL inside the shock tube. This in turn will possibly alter the injury type, severity, and lethality. We found that the optimal APL is where the Friedlander waveform is first formed inside the shock tube. Once the optimal APL was determined, the effect of the incident blast intensity on the surface and intracranial pressure was measured and analyzed. Noticeably, surface and intracranial pressure increases linearly with the incident peak overpressures, though surface pressures are significantly higher than the other two. Further, we developed and validated an anatomically accurate finite element model of the rat head. With this model, we determined that the main pathway of pressure transmission to the brain was through the skull and not through the snout; however, the snout plays a secondary role in diffracting the incoming blast wave towards the skull.
机译:简易爆炸装置(IED)产生的爆炸波会给士兵和平民造成创伤性脑损伤(TBI)。使用冲击管的体内动物模型已在实验室中广泛使用,以模拟野外条件,识别伤害机制并制定伤害阈值。在本文中,我们将大鼠放置在沿冲击管长度的不同位置(即内部,外部和出口附近),以检查动物放置位置(APL)在动物承受的生物力学负荷中的作用。我们发现,取决于APL,大脑和胸腔(肺和心脏)内脏的生物力学负荷差异很大。当标本放置在外面时,与冲击管内部的APL相比,胸腔内的器官会承受更高的压力,持续的时间更长。反过来,这可能会改变伤害类型,严重程度和致死率。我们发现,最佳APL是在冲击管内部首先形成Friedlander波形的位置。一旦确定了最佳APL,就可以测量和分析入射爆炸强度对表面和颅内压的影响。值得注意的是,尽管表面压力明显高于其他两个表面压力,但表面和颅内压力随入射峰值超压线性增加。此外,我们开发并验证了大鼠头部的解剖学精确的有限元模型。通过这个模型,我们确定了压力传递到大脑的主要途径是通过颅骨而不是通过鼻子。但是,口鼻部在将传入的爆炸波向头骨扩散时起次要作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号