...
首页> 外文期刊>Journal of Materials Engineering and Performance >Processing and Characterization of Novel Biomimetic Nanoporous Bioceramic Surface on beta-Ti Implant by Powder Mixed Electric Discharge Machining
【24h】

Processing and Characterization of Novel Biomimetic Nanoporous Bioceramic Surface on beta-Ti Implant by Powder Mixed Electric Discharge Machining

机译:粉末混合放电加工在β-Ti植入物上新型仿生纳米多孔生物陶瓷表面的加工与表征

获取原文
获取原文并翻译 | 示例
           

摘要

Herein, a beta-Ti-based implant was subjected to powder mixed electric discharge machining (PMEDM) for surface modification to produce a novel biomimetic nanoporous bioceramic surface. The microstructure, surface topography, and phase composition of the non-machined and machined (PMEDMed) surfaces were investigated using field-emission scanning electron microscopy, energy-dispersive x-ray spectroscopy, and x-ray diffraction. The microhardness of the surfaces was measured on a Vickers hardness tester. The corrosion resistance of the surfaces was evaluated via potentiodynamic polarization measurements in simulated body fluid. The application of PMEDM not only altered the surface chemistry, but also imparted the surface with a nanoporous topography or a natural bone-like surface structure. The characterization results confirmed that the alloyed layer mainly comprised bioceramic oxides and carbide phases (TiO2, Nb2O5, ZrO2, SiO2, TiC, NbC, SiC). The microhardness of PMEDMed surface was twofold higher than that of the base material (beta-Ti alloy), primarily because of the formation of the hard carbide phases on the machined layer. Electrochemical analysis revealed that PMEDMed surface featured insulative and protective properties and thus displayed higher corrosion resistance ability when compared with the non-machined surface. This result was attributed to the formation of the bioceramic oxides on the machined surface. Additionally, the in vitro biocompatibility of the surfaces was evaluated using human osteoblastic cell line MG-63. PMEDMed surface with a micro-, sub-micro-, and nano-structured topography exhibited bioactivity and improved biocompatibility relative to beta-Ti surface. Furthermore, PMEDMed surface enabled better adhesion and growth of MG-63 when compared with the non-machined substrate.
机译:在此,对基于β-Ti的植入物进行粉末混合放电加工(PMEDM)以进行表面改性,以产生新型的仿生纳米多孔生物陶瓷表面。使用场发射扫描电子显微镜,能量色散X射线光谱和X射线衍射研究了未加工和加工(PMEDMed)表面的微观结构,表面形貌和相组成。在维氏硬度计上测量表面的显微硬度。通过在模拟体液中的电位动力学极化测量来评估表面的耐腐蚀性。 PMEDM的应用不仅改变了表面化学性质,而且赋予了表面纳米孔形貌或天然的骨样表面结构。表征结果证实合金层主要包含生物陶瓷氧化物和碳化物相(TiO2,Nb2O5,ZrO2,SiO2,TiC,NbC,SiC)。 PMEDMed表面的显微硬度比基础材料(β-Ti合金)的显微硬度高两倍,这主要是由于在加工层上形成了硬质碳化物相。电化学分析表明,与未加工表面相比,PMEDMed表面具有绝缘和保护性能,因此显示出更高的耐腐蚀能力。该结果归因于在加工表面上形成生物陶瓷氧化物。另外,使用人成骨细胞系MG-63评估了表面的体外生物相容性。相对于β-Ti表面,具有微,亚微和纳米结构形貌的PMEDMed表面表现出生物活性并改善了生物相容性。此外,与未加工的基材相比,PMEDMed表面能够更好地粘附和生长MG-63。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号