首页> 外文期刊>Journal of Materials Engineering and Performance >Material Models for Simulation of Superplastic Mg Alloy Sheet Forming
【24h】

Material Models for Simulation of Superplastic Mg Alloy Sheet Forming

机译:模拟超塑性镁合金板材成形的材料模型

获取原文
获取原文并翻译 | 示例
           

摘要

Accurate prediction of strain fields and cycle times for fine-grained Mg alloy sheet forming at high temperatures (400-500℃) is severely limited by a lack of accurate material constitutive models. This paper details an important first step toward addressing this issue by evaluating material constitutive models, developed from tensile data, for high-temperature plasticity of a fine-grained Mg AZ31 sheet material. The finite element method was used to simulate gas pressure bulge forming experiments at 450℃ using four constant gas pressures. The applicability of the material constitutive models to a balanced-biaxial stress state was evaluated through comparison of simulation results with bulge forming data. Simulations based upon a phenomenological material constitutive model developed using data from both tensile elongation and strain-rate-change experiments were found to be in favorable accord with experiments. These results provide new insights specific to the construction and use of material constitutive models for hot deformation of wrought, fine-grained Mg alloys.
机译:缺乏精确的材料本构模型严重限制了在高温(400-500℃)下成形细晶镁合金薄板的应变场和循环时间的准确预测。本文详细介绍了解决这一问题的重要第一步,方法是评估由拉伸数据开发的材料本构模型,以用于细粒Mg AZ31板材的高温可塑性。采用有限元方法模拟了在四个恒定气压下450℃下气压凸起的形成实验。通过将模拟结果与凸出成形数据进行比较,评估了材料本构模型在平衡双轴应力状态下的适用性。发现基于基于现象学材料本构模型的模拟,该模型使用来自拉伸伸长率和应变率变化实验的数据开发,与实验相吻合。这些结果为变形,细晶粒镁合金热变形的材料本构模型的构建和使用提供了新的见解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号