【24h】

Mixed ionic/electronic conductors Sr2Fe2O5 and Sr4Fe6O13: atomic-scale studies of defects and ion migration

机译:离子/电子混合导体Sr2Fe2O5和Sr4Fe6O13:缺陷和离子迁移的原子尺度研究

获取原文
获取原文并翻译 | 示例
       

摘要

Atomistic simulations of the structures and defect energetics of two mixed-conducting strontium ferrite materials, Sr2Fe2O5 and Sr4Fe6O13, are reported. Oxygen Frenkel defects are found to be the predominant intrinsic defects in both materials, with the Frenkel energy in the intergrowth structure, Sr4Fe6O13, being much less than that in Sr2Fe2O5 or other known oxide ion conductors. Formation of electronic defects under oxidizing and reducing conditions is calculated to be more favourable in the Sr4Fe6O13 intergrowth structure than in Sr2Fe2O5. Comparison of solution energies for cobalt incorporation shows Sr4Fe6O13 has a slight preference for Co2+ being located on lower coordination sites, whereas in Sr2Fe2O5, Co2+ ions located on tetrahedral sites are most favourable. Binding energy calculations suggest the possible formation of Co2+-vacancy clusters with increasing Co2+ concentration. The rapid oxide ion conductivity in Sr(4)Fe(6-x)CoxO(13 +/-delta) membranes is thought to arise from a combination of factors: a low oxygen Frenkel energy ( to produce an intrinsic population of mobile interstitial oxide ions and vacancies), low migration energy barriers, and ease of distortion of polyhedra.
机译:报道了两种混合导电锶铁氧体材料Sr2Fe2O5和Sr4Fe6O13的结构和缺陷能的原子模拟。发现弗伦克尔氧缺陷是两种材料中的主要固有缺陷,共生结构Sr4Fe6O13中的弗伦克尔能量远低于Sr2Fe2O5或其他已知的氧化物离子导体中的弗伦克尔能量。计算出在氧化和还原条件下电子缺陷的形成在Sr4Fe6O13共生结构中比在Sr2Fe2O5中更有利。钴结合溶液能的比较表明,Sr4Fe6O13偏爱Co2 +位于较低的配位位点,而在Sr2Fe2O5中,位于四面体位的Co2 +离子是最有利的。结合能计算表明,随着Co2 +浓度的增加,可能会形成Co2 +空位簇。 Sr(4)Fe(6-x)CoxO(13 +/- delta)膜中的快速氧化物离子电导率被认为是由多种因素引起的:低氧弗伦克尔能量(产生移动间隙氧化物的固有种群)离子和空位),低迁移能垒和多面体易于变形。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号