...
首页> 外文期刊>Journal of Materials Chemistry, C. materials for optical and electronic devices >Acceptor defect-participating magnetic exchange in ZnO : Cu nanocrystalline film: defect structure evolution, Cu-N synergetic role and magnetic control
【24h】

Acceptor defect-participating magnetic exchange in ZnO : Cu nanocrystalline film: defect structure evolution, Cu-N synergetic role and magnetic control

机译:ZnO中参与受体缺陷的磁交换:Cu纳米晶膜:缺陷结构演变,Cu-N协同作用和磁控制

获取原文
获取原文并翻译 | 示例
           

摘要

Long-term ambiguity in knowledge has made individuals confused about the uncertain origin of magnetism and some defect-related issues in transition metal ions (TMs)-doped ZnO systems. In this paper, a facile colloidal chemistry procedure is employed to prepare amine-capped ZnO : Cu nanocrystals (NCs) with an optimized Cu-N defect configuration. The doping mechanism, dopant spatial distribution, valence state and defect structure are revealed in detail via electron microscopy, electron spin resonance (ESR) and photoluminescence (PL) techniques assisted by in situ chemical tracking. N-capping annealing-induced acceptor defects can activate high-temperature ferromagnetism in spin-coated ZnO : Cu nanocrystalline films, whereas O-capping ones cannot. Although the maximum magnetic moment of surface acceptor defect-mediated ferromagnetic films (1.58 mu(B)/Cu) is comparable with that of a bulk donor defect-mediated case (1.41 mu(B)/Cu), the corresponding physical nature is totally distinct and the former is considered more efficient. A comparative demonstration of the spin-exchange process in terms of acceptor and donor defects strongly indicates a diverse role of defects in mediating ferromagnetic ordering, like the case of carrier type-determined differences in ferromagnetism. The proposal of physical (annealing) or chemical (capping) means for magnetism control in the ZnO : Cu system expands the methodology of applications, which utilize spin and defects as controllable states.
机译:长期的知识歧义使人们对磁性的不确定性以及过渡金属离子(TMs)掺杂的ZnO系统中一些与缺陷相关的问题感到困惑。在本文中,采用一种简便的胶体化学程序来制备具有优化的Cu-N缺陷构型的胺封端ZnO:Cu纳米晶体(NCs)。通过电子显微镜,电子自旋共振(ESR)和光致发光(PL)技术,借助原位化学跟踪,详细揭示了掺杂机理,掺杂剂空间分布,价态和缺陷结构。 N盖退火引起的受体缺陷可以激活旋涂ZnO:Cu纳米晶膜中的高温铁磁性,而O盖膜则不能。尽管表面受体缺陷介导的铁磁膜的最大磁矩(1.58 mu(B)/ Cu)与本体施主缺陷介导的情况(1.41 mu(B)/ Cu)的最大磁矩相当,但相应的物理性质是完全相同的截然不同,而前者被认为更有效。就受体和施主缺陷而言,自旋交换过程的比较演示强烈表明,缺陷在介导铁磁有序中起着不同的作用,就像由载流子类型决定的铁磁差异一样。提出了在ZnO:Cu系统中进行磁控制的物理(退火)或化学(封盖)方法的提案,扩大了应用方法,该方法利用自旋和缺陷作为可控状态。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号