...
首页> 外文期刊>Biophysical Chemistry: An International Journal Devoted to the Physical Chemistry of Biological Phenomena >Experiment-guided thermodynamic simulations on reversible two-state proteins: implications for protein thermostability.
【24h】

Experiment-guided thermodynamic simulations on reversible two-state proteins: implications for protein thermostability.

机译:可逆的两态蛋白质的实验指导热力学模拟:对蛋白质热稳定性的影响。

获取原文
获取原文并翻译 | 示例
           

摘要

Here, we perform protein thermodynamic simulations within a set of boundary conditions, effectively blanketing the experimental data. The thermodynamic parameters, melting temperature (T(G)), enthalpy change at the melting temperature (DeltaH(G)) and heat capacity change (DeltaC(p)) were systematically varied over the experimentally observed ranges for small single domain reversible two-state proteins. Parameter sets that satisfy the Gibbs-Helmholtz equation and yield a temperature of maximal stability (T(S)) around room temperature were selected. The results were divided into three categories by arbitrarily chosen T(G) ranges. The T(G) ranges in these categories correspond to typical values of the melting temperatures observed for the majority of the proteins from mesophilic, thermophilic and hyperthermophilic organisms. As expected, DeltaC(p) values tend to be high in mesophiles and low in hyperthermophiles. An increase in T(G) is accompanied by an up-shift and broadening of the protein stability curves, however, with a large scatter. Furthermore, the simulations reveal that the average DeltaH(G) increases with T(G) up to approximately 360 K and becomes constant thereafter. DeltaC(p) decreases with T(G) with different rates before and after approximately 360 K. This provides further justification for the separate grouping of proteins into thermophiles and hyperthermophiles to assess their thermodynamic differences. This analysis of the Gibbs-Helmholtz equation has allowed us to study the interdependence of the thermodynamic parameters T(G), DeltaH(G) and DeltaC(p) and their derivatives in a more rigorous way than possible by the limited experimental protein thermodynamics data available in the literature. The results provide new insights into protein thermostability and suggest potential strategies for its manipulation.
机译:在这里,我们在一组边界条件下进行蛋白质热力学模拟,有效地覆盖了实验数据。热力学参数,熔化温度(T(G)),熔化温度下的焓变(DeltaH(G))和热容变化(DeltaC(p))在实验观察到的范围内系统地改变了小的单畴可逆两分子-状态蛋白。选择满足吉布斯-亥姆霍兹方程并在室温附近产生最大稳定性(T(S))温度的参数集。通过任意选择的T(G)范围将结果分为三类。这些类别中的T(G)范围对应于嗜温,嗜热和超嗜热生物体中大多数蛋白质的典型熔化温度值。如预期的那样,DeltaC(p)值在嗜温菌中较高,而在嗜热菌中较低。 T(G)的增加伴随着蛋白质稳定性曲线的上移和变宽,但是散布较大。此外,仿真显示,平均DeltaH(G)随T(G)的增加而增加,直至大约360 K,此后变得恒定。大约360 K前后,DeltaC(p)随T(G)的降低速率不同而降低。这为进一步将蛋白质分为嗜热性和超嗜热性以评估其热力学差异提供了进一步的依据。吉布斯-亥姆霍兹方程的这种分析使我们能够以比有限的实验蛋白质热力学数据更严格的方式研究热力学参数T(G),DeltaH(G)和DeltaC(p)及其衍生物的相互依赖性在文献中可用。结果为蛋白质热稳定性提供了新的见识,并提出了对其进行操纵的潜在策略。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号